A Single-Celled Metasurface for Multipolarization Generation and Wavefront Manipulation
Abstract
:1. Introduction
2. Working Principle and Unit Cell Design
3. Metasurface for Vectorial Holography
4. Metasurface for Spatially Varying Foci and Polarization States
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zhong, J.; Li, B.; Qi, S.; Li, Y.; Li, P.; Wen, D.; Liu, S.; Wei, B.; Zhao, J. Full-Color Holographic Display and Encryption with Full-Polarization Degree of Freedom. Adv. Mater. 2022, 34, 2103192. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Barkaoui, H.; Zhang, X.; Jin, L.; Song, Q.; Xiao, S. Optical Metasurfaces towards Multifunctionality and Tunability. Nanophotonics 2022, 11, 1761–1781. [Google Scholar] [CrossRef]
- Zang, X.; Ding, H.; Intaravanne, Y.; Chen, L.; Peng, Y.; Xie, J.; Ke, Q.; Balakin, A.V.; Shkurinov, A.P.; Chen, X.; et al. A Multi-Foci Metalens with Polarization-Rotated Focal Points. Laser Photonics Rev. 2019, 13, 1900182. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 Nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yang, Q.; He, S.; Shi, Y.; Liu, X.; Sun, J.; Guo, K.; Wang, L.; Guo, Z. Multiplexed Multi-Focal and Multi-Dimensional SHE (Spin Hall Effect) Metalens. Opt. Express 2021, 29, 43270. [Google Scholar] [CrossRef]
- Ji, R.; Jin, C.; Song, K.; Wang, S.-W.; Zhao, X. Design of Multifunctional Janus Metasurface Based on Subwavelength Grating. Nanomaterials 2021, 11, 1034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Yue, W.; Xu, Q.; Tian, C.; Zhang, X.; Plum, E.; Zhang, S.; Han, J.; Zhang, W. Direct Polarization Measurement Using a Multiplexed Pancharatnam–Berry Metahologram. Optica 2019, 6, 1190. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Xie, X.; Guo, X.; Zhao, Y.; Jin, C.; Song, K.; Wang, S.; Yin, J.; Liu, Y.; Jiang, C.; et al. Chirality-Assisted Aharonov–Anandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation. ACS Photonics 2021, 8, 1847–1855. [Google Scholar] [CrossRef]
- Ji, R.; Song, K.; Guo, X.; Xie, X.; Zhao, Y.; Jin, C.; Wang, S.; Jiang, C.; Yin, J.; Liu, Y.; et al. Spin-Decoupled Metasurface for Broadband and Pixel-Saving Polarization Rotation and Wavefront Control. Opt. Express 2021, 29, 25720–25730. [Google Scholar] [CrossRef]
- Wen, D.; Pan, K.; Meng, J.; Wu, X.; Guo, X.; Li, P.; Liu, S.; Li, D.; Wei, B.; Xie, X.; et al. Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface. Laser Photonics Rev. 2022, 16, 2200206. [Google Scholar] [CrossRef]
- Ming, Y.; Intaravanne, Y.; Ahmed, H.; Kenney, M.; Lu, Y.; Chen, X. Creating Composite Vortex Beams with a Single Geometric Metasurface. Adv. Mater. 2022, 34, 2109714. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Intaravanne, Y.; Ma, A.; Wang, R.; Li, S.; Li, Z.; Chen, S.; Li, J.; Chen, X. Optical Metasurfaces for Generation and Superposition of Optical Ring Vortex Beams. Laser Photonics Rev. 2020, 14, 2000146. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Choi, D.; Chen, S.; Tian, J. Spin-Selective Full-Dimensional Manipulation of Optical Waves with Chiral Mirror. Adv. Mater. 2020, 32, 1907983. [Google Scholar] [CrossRef] [PubMed]
- Intaravanne, Y.; Han, J.; Wang, R.; Ma, A.; Li, S.; Chen, S.; Chen, X. Phase Manipulation-Based Polarization Profile Realization and Hybrid Holograms Using Geometric Metasurface. Adv. Photonics Res. 2021, 2, 2000046. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Xu, Z.; Li, X.; Geng, G.; Li, J.; Wang, Y.; Huang, L. Correlated Triple Hybrid Amplitude and Phase Holographic Encryption Based on a Metasurface. Photon. Res. 2022, 10, 678–686. [Google Scholar] [CrossRef]
- Georgi, P.; Wei, Q.; Sain, B.; Schlickriede, C.; Wang, Y.; Huang, L.; Zentgraf, T. Optical Secret Sharing with Cascaded Metasurface Holography. Sci. Adv. 2021, 7, eabf9718. [Google Scholar] [CrossRef]
- Song, K.; Su, Z.; Silva, S.; Fowler, C.; Ding, C.; Ji, R.; Liu, Y.; Zhao, X.; Zhou, J. Broadband and High-Efficiency Transmissive-Type Nondispersive Polarization Conversion Meta-Device. Opt. Mater. Express 2018, 8, 2430–2438. [Google Scholar] [CrossRef]
- Dai, Q.; Zhou, N.; Deng, L.; Deng, J.; Li, Z.; Zheng, G. Dual-Channel Binary Gray-Image Display Enabled with Malus-Assisted Metasurfaces. Phys. Rev. Appl. 2020, 14, 034002. [Google Scholar] [CrossRef]
- Chen, K.; Xu, C.; Zhou, Z.; Li, Z.; Chen, P.; Zheng, G.; Hu, W.; Lu, Y. Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectral-Response. Laser Photonics Rev. 2022, 16, 2100591. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Y.; Tao, J.; Deng, L.; Liu, D.; Guan, Z.; Li, G.; Li, Z.; Yu, S.; Zheng, G.; et al. Spatial Frequency Multiplexed Meta-Holography and Meta-Nanoprinting. ACS Nano 2019, 13, 9237–9246. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, C.; Guan, Z.; Tao, J.; Chang, S.; Dai, Q.; Xiao, Y.; Cui, Y.; Wang, Y.; Yu, S.; et al. Three-Channel Metasurfaces for Simultaneous Meta-Holography and Meta-Nanoprinting: A Single-Cell Design Approach. Laser Photonics Rev. 2020, 14, 2000032. [Google Scholar] [CrossRef]
- Wen, D.; Cadusch, J.J.; Meng, J.; Crozier, K.B. Vectorial Holograms with Spatially Continuous Polarization Distributions. Nano Lett. 2021, 21, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sain, B.; Wei, Q.; Tang, C.; Li, X.; Weiss, T.; Huang, L.; Wang, Y.; Zentgraf, T. Multichannel Vectorial Holographic Display and Encryption. Light Sci. Appl. 2018, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Balthasar Mueller, J.P.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Zhang, F.; Pu, M.; Chen, Y.; Guo, Y.; Xie, T.; Feng, X.; Ma, X.; Li, X.; Yu, H.; et al. All-Metallic High-Efficiency Generalized Pancharatnam–Berry Phase Metasurface with Chiral Meta-Atoms. Nanophotonics 2022, 11, 1961–1968. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface Holograms Reaching 80% Efficiency. Nat. Nanotech 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Bai, G.D.; Ma, Q.; Li, R.Q.; Mu, J.; Jing, H.B.; Zhang, L.; Cui, T.J. Spin-Symmetry Breaking Through Metasurface Geometric Phases. Phys. Rev. Appl. 2019, 12, 044042. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Coriolis Effect in Optics: Unified Geometric Phase and Spin-Hall Effect. Phys. Rev. Lett. 2008, 101, 030404. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.-L.; Wang, Z.-Q.; Li, F.-J.; Hu, M.-X.; Li, X. Multi-Freedom Metasurface Empowered Vectorial Holography. Nanophotonics 2022, 11, 1725–1739. [Google Scholar] [CrossRef]
- Wan, W.; Yang, W.; Feng, H.; Liu, Y.; Gong, Q.; Xiao, S.; Li, Y. Multiplexing Vectorial Holographic Images with Arbitrary Metaholograms. Adv. Opt. Mater. 2021, 9, 2100626. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; Wu, Q.; Chen, C.; Lei, M.; Chen, G.; Tian, F.; Liu, Z. Nonlinear Computational Edge Detection Metalens. Adv. Funct. Mater. 2022, 32, 2204734. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Chen, X.; Kumar, D.; Kang, Y.; Bai, C.; Ubaid, S.; Zhang, D. Polarization Insensitive, Broadband, Near Diffraction-Limited Metalens in Ultraviolet Region. Nanomaterials 2020, 10, 1439. [Google Scholar] [CrossRef] [PubMed]
- Tsilipakos, O.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M.; Koschny, T. Squeezing a Prism into a Surface: Emulating Bulk Optics with Achromatic Metasurfaces. Adv. Opt. Mater. 2020, 8, 2000942. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of optical-constants. J. Optical Society Am. A-Optics Image Sci. Vision 1984, 1, 1297. [Google Scholar]
- Prucha, E.J.; Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 1, pp. 400–406. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, R.; Guo, X.; Liu, Z.; Wu, X.; Jin, C.; Liu, F.; Zheng, X.; Sun, Y.; Wang, S. A Single-Celled Metasurface for Multipolarization Generation and Wavefront Manipulation. Nanomaterials 2022, 12, 4336. https://doi.org/10.3390/nano12234336
Ji R, Guo X, Liu Z, Wu X, Jin C, Liu F, Zheng X, Sun Y, Wang S. A Single-Celled Metasurface for Multipolarization Generation and Wavefront Manipulation. Nanomaterials. 2022; 12(23):4336. https://doi.org/10.3390/nano12234336
Chicago/Turabian StyleJi, Ruonan, Xin Guo, Zhichao Liu, Xianfeng Wu, Chuan Jin, Feng Liu, Xinru Zheng, Yang Sun, and Shaowei Wang. 2022. "A Single-Celled Metasurface for Multipolarization Generation and Wavefront Manipulation" Nanomaterials 12, no. 23: 4336. https://doi.org/10.3390/nano12234336