In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures
Abstract
:1. Introduction
2. Theoretical Methods and Models
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef]
- Riis-jensen, A.C.; Deilmann, T.; Olsen, T.; Thygesen, K.S. Classifying the Electronic and Optical Properties of Janus Monolayers. ACS Nano 2019, 13, 13354–13364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Z.; Gong, T.; Pan, R.; Wang, H.; Guo, Z.; Zhang, H.; Fu, X. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J. Mater. Chem. A 2020, 8, 8813. [Google Scholar]
- Hou, B.; Zhang, Y.; Zhang, H.; Shao, H.; Ma, C.; Zhang, X.; Chen, Y.; Ni, G.; Zhu, H. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides. J. Phys. Chem. Lett. 2020, 11, 3116–3128. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Tan, H.-J.; Ding, P.-J.; Wen, B.; Li, X.-B.; Teobaldi, G.; Liu, L.-M. Recent advances in low-dimensional Janus materials: Theoretical and simulation perspectives. Mater. Adv. 2021, 2, 7543. [Google Scholar]
- Cheng, Y.C.; Zhu, Z.Y.; Tahir, M.; Schwingenschlögl, U. Spin Orbit-Induced Spin Splittings in Polar Transition Metal Dichalcogenide Monolayers. EPL 2013, 102, 57001. [Google Scholar] [CrossRef]
- Dong, L.; Lou, J.; Shenoy, V.B. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano 2017, 11, 8242–8248. [Google Scholar] [PubMed]
- Yagmurcukardes, M.; Sevik, C.; Peeters, F.M. Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys. Rev. B Condens. Matter 2019, 100, 045415. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, M.; Lin, H.; Hou, T.; Wang, L.; Li, Y.; Lee, S.-T. Janus Structures of Transition Metal Dichalcogenides as the Heterojunction Photocatalysts for Water Splitting. J. Phys. Chem. C 2018, 122, 3123–3129. [Google Scholar]
- Ju, L.; Bie, M.; Shang, J.; Tang, X.; Kou, L. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J. Phys. Mater. 2020, 3, 022004. [Google Scholar]
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.; et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar]
- Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L.; et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198. [Google Scholar] [PubMed] [Green Version]
- Yin, W.-J.; Wen, B.; Nie, G.-Z.; Wei, X.-L.; Liu, L.-M. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 2018, 6, 1693–1700. [Google Scholar] [CrossRef]
- Ma, X.; Yong, X.; Jian, C.-C.; Zhang, J. Transition Metal-Functionalized Janus MoSSe Monolayer: A Magnetic and Efficient Single-Atom Photocatalyst for Water-Splitting Applications. J. Phys. Chem. C 2019, 123, 18347–18354. [Google Scholar] [CrossRef]
- Jin, C.; Tang, X.; Tan, X.; Smith, S.C.; Dai, Y.; Kou, L. A Janus MoSSe monolayer: A superior and strain-sensitive gas sensing material. J. Mater. Chem. A 2019, 7, 1099–1106. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Dixit, A. Defect engineered MoSSe Janus monolayer as a promising two dimensional material for NO2 and NO gas sensing. Appl. Surf. Sci. 2019, 490, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Cui, Z.; Li, Q.; Ding, Y. Gas (CO and NO) adsorption and sensing based on transition metals functionalized Janus MoSSe. Appl. Surf. Sci. 2021, 565, 150509. [Google Scholar]
- Shang, C.; Lei, X.; Hou, B.; Wu, M.; Xu, B.; Liu, G.; Ouyang, C. Theoretical Prediction of Janus MoSSe as a Potential Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2018, 122, 23899–23909. [Google Scholar] [CrossRef]
- Tang, X.; Ye, H.; Liu, W.; Liu, Y.; Guo, Z.; Wang, M. Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications. Nanoscale Adv. 2021, 3, 2902–2910. [Google Scholar]
- Xia, W.; Dai, L.; Yu, P.; Tong, X.; Song, W.; Zhang, G.; Wang, Z. Recent progress in van der Waals heterojunctions. Nanoscale 2017, 9, 4324–4365. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Huang, Y.; Wang, H.; Zhang, H. Van der Waals heterostructures for optoelectronics: Progress and prospects. Appl. Mater. Today 2019, 16, 435–455. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, B.; Zou, X.; Cheng, H.-M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Ju, L.; Bie, M.; Zhang, X.; Chen, X.; Kou, L. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys. 2021, 16, 13201. [Google Scholar] [CrossRef]
- Idrees, M.; Din, H.U.; Ali, R.; Rehman, G.; Hussain, T.; Nguyen, C.V.; Ahmad, I.; Amin, B. Optoelectronic and solar cell applications of janus monolayers and their van der waals heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 18612–18621. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lei, X.; Wang, Y.; Zhong, S.; Liu, G.; Xu, B.; Ouyang, C. Tunable electronic structures in BP/MoSSe van der Waals heterostructures by external electric field and strain. Appl. Surf. Sci. 2019, 497, 143809. [Google Scholar] [CrossRef]
- Yin, W.; Wen, B.; Ge, Q.; Zou, D.; Xu, Y.; Liu, M.; Wei, X.; Chen, M.; Fan, X. Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study. Prog. Nat. Sci. 2019, 29, 335–340. [Google Scholar] [CrossRef]
- Deng, S.; Li, L.; Rees, P. Graphene/MoXY Heterostructures Adjusted by Interlayer Distance, External Electric Field, and Strain for Tunable Devices. ACS Appl. Nano Mater. 2019, 2, 3977–3988. [Google Scholar] [CrossRef]
- Yu, C.; Cheng, X.; Wang, C.; Wang, Z. Tuning the n-type contact of graphene on janus MoSSe monolayer by strain and electric field. Phys. E 2019, 110, 148–152. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, R.; Luo, X.; Liang, Q.; Wang, Y.; Xie, Q. First-Principles Calculations on Janus MoSSe/Graphene van der Waals Heterostructures: Implications for Electronic Devices. ACS Appl. Nano Mater. 2022, 5, 8371–8381. [Google Scholar] [CrossRef]
- Zhou, S.-H.; Zhang, J.; Ren, Z.-Z.; Gu, J.-F.; Ren, Y.-R.; Huang, S.; Lin, W.; Li, Y.; Zhang, Y.-F.; Chen, W.-K. First-principles study of MoSSe_graphene heterostructures as anode for Li-ion batteries. Chem. Phys. 2020, 529, 110583. [Google Scholar] [CrossRef]
- Lin, H.; Lou, N.; Yang, D.; Jin, R.; Huang, Y. Janus MoSSe/graphene heterostructures: Potential anodes for lithium-ion batteries. J. Alloys Compd. 2021, 854, 157215. [Google Scholar] [CrossRef]
- Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Bo, G.; Liu, Y.; Xu, X.; Du, Y.; Dou, S.X. Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small 2019, 15, 1805147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Shao, Z.; Zhao, H.; Yang, L.; Wang, C. Intrinsic carrier mobility of germanene is larger than graphene’s: First-principle calculations. RSC Adv. 2014, 4, 21216–21220. [Google Scholar] [CrossRef]
- Liu, C.-C.; Jiang, H.; Yao, Y.G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B Condens. Matter 2011, 84, 195430. [Google Scholar]
- Bandaru, P.R.; Pichanusakorn, P. An outline of the synthesis and properties of silicon nanowires. Semicond. Sci. Technol. 2010, 25, 024003. [Google Scholar]
- Hussain, T.; Kaewmaraya, T.; Chakraborty, S.; Vovusha, H.; Amornkitbamrung, V.; Ahuja, R. Defected and functionalized germanene-based nanosensors under sulfur comprising gas exposure. ACS Sens. 2018, 3, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Zhang, C.-L.; Li, L.; Fu, Z.-Q.; Wei, X.-M.; Song, Y.-L. Adsorption of alkali metal atoms on germanene: A first-principles study. Appl. Surf. Sci. 2014, 314, 15–20. [Google Scholar] [CrossRef]
- Pang, Q.; Li, L.; Zhang, C.-L.; Wei, X.-M.; Song, Y.-L. Structural, electronic and magnetic properties of 3d transition metal atom adsorbed germanene: A first-principles study. Mater. Chem. Phys. 2015, 160, 94–96. [Google Scholar]
- Zhou, S.; Zhao, J. Electronic structures of germanene on MoS2: Effect of substrate and molecular adsorption. J. Phys. Chem. C 2016, 120, 21691–21698. [Google Scholar] [CrossRef]
- Pang, Q.; Xin, H.; Gao, D.-L.; Zhao, J.; Chai, R.-P.; Song, Y.-L. Strain effect on the electronic and optical properties of Germanene/MoS2 heterobilayer. Mater. Today Commun. 2021, 26, 101845. [Google Scholar] [CrossRef]
- Cai, Y.; Chuu, C.-P.; Wei, C.M.; Chou, M.Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B Condens. Matter. 2013, 88, 245408. [Google Scholar]
- Persichetti, L.; Jardali, F.; Vach, H.; Sgarlata, A.; Berbezier, I.; De Crescenzi, M.; Balzarotti, A. Van der Waals Heteroepitaxy of Germanene Islands on Graphite. J. Phys. Chem. Lett. 2016, 7, 3246–3251. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. 1999, 59, 1758. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [PubMed] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5118. [Google Scholar]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B Condens. Matter 2006, 73, 045112. [Google Scholar] [CrossRef] [Green Version]
- Björkman, T.; Gulans, A.; Krasheninnikov, A.V.; Nieminen, R.M. van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108, 235502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1974, 71, 717–727. [Google Scholar] [CrossRef]
- Bader, R. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Wang, Y.; Ding, Y. Strain-induced self-doping in silicene and germanene from first-principles. Solid State Commun. 2013, 155, 6–11. [Google Scholar] [CrossRef]
Type | Configuration | |||||
---|---|---|---|---|---|---|
Ge/SMoSe | Hol | −20.272 | 16.199 | 2.924 | 0.718 | 3.237 |
Top(S) | −20.259 | 16.202 | 2.921 | 0.717 | 3.237 | |
Mo | −20.268 | 16.202 | 2.920 | 0.718 | 3.237 | |
Bridge | −20.262 | 16.200 | 2.926 | 0.717 | 3.237 | |
Ge/SeMoS | Hol | −21.746 | 16.195 | 3.067 | 0.714 | 3.238 |
Top(Se) | −21.730 | 16.196 | 3.071 | 0.713 | 3.238 | |
Mo | −21.769 | 16.196 | 3.068 | 0.712 | 3.238 | |
Bridge | −21.720 | 16.197 | 3.064 | 0.714 | 3.238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Q.; Xin, H.; Chai, R.; Gao, D.; Zhao, J.; Xie, Y.; Song, Y. In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures. Nanomaterials 2022, 12, 3498. https://doi.org/10.3390/nano12193498
Pang Q, Xin H, Chai R, Gao D, Zhao J, Xie Y, Song Y. In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures. Nanomaterials. 2022; 12(19):3498. https://doi.org/10.3390/nano12193498
Chicago/Turabian StylePang, Qing, Hong Xin, Ruipeng Chai, Dangli Gao, Jin Zhao, You Xie, and Yuling Song. 2022. "In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures" Nanomaterials 12, no. 19: 3498. https://doi.org/10.3390/nano12193498
APA StylePang, Q., Xin, H., Chai, R., Gao, D., Zhao, J., Xie, Y., & Song, Y. (2022). In-Plane Strain Tuned Electronic and Optical Properties in Germanene-MoSSe Heterostructures. Nanomaterials, 12(19), 3498. https://doi.org/10.3390/nano12193498