Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures
Abstract
:1. Introduction
2. Tight-Binding Model
3. Results
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, C.; Chen, J.; Wu, X.-J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089. [Google Scholar] [CrossRef]
- El Abbassi, M.; Sangtarash, M.; Liu, X.; Perrin, M.L.; Braun, O.; Lambert, C.; van der Zant, H.S.J.; Yitzchaik, S.; Decurtins, S.; Liu, S.-X.; et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, S.; Moth-Poulsen, K. Single molecule electronic devices with carbon-based materials: Status and opportunity. Nanoscale 2021, 13, 659. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, H.; Qian, Q.; Zhang, H.; Yang, Y.; Hong, W. Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Res. 2021, 1–11. [Google Scholar] [CrossRef]
- Sergeyev, D.; Ashikov, N.; Zhanturina, N. Electric Transport Properties of a Model Nanojunction “Graphene–Fullerene C60–Graphene”. Int. J. Nanosci. 2021, 20, 2150. [Google Scholar] [CrossRef]
- Shinde, P.V.; Tripathi, A.; Thapa, R.; Rout, C.S. Nanoribbons of 2D materials: A review on emerging trends, recent developments, and future perspectives. Coord. Chem. Rev. 2022, 453, 214335. [Google Scholar] [CrossRef]
- Prasad, N.; Wu, X.; Banerjee, S.K.; Register, L.F. Method to enhance resonant interlayer tunneling in bilayer-graphene systems. J. Comput. Electron. 2021, 20, 1868–1873. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, D.; Tian, H.R.; Wu, Q.; Hou, S.; Pi, J.; Hong, W. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748. [Google Scholar] [CrossRef] [Green Version]
- Mamiyev, Z.; Tegenkamp, C. Sn intercalation into the BL/SiC(0001) interface: A detailed SPA-LEED investigation. Surf. Interfaces 2022, 34, 102304. [Google Scholar] [CrossRef]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 09211. [Google Scholar] [CrossRef]
- Berdonces-Layunta, A.; Schulz, F.; Aguilar-Galindo, F.; Lawrence, J.; Mohammed, S.G.; Muntwiler, M.; Lobo-Checa, J.; Liljeroth, P.; de Oteyza, D.G. Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons. ACS Nano 2021, 15, 16552. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Du, Y.; Miao, Y.-E.; Ding, Q.; He, S.; Tjiu, W.; Pan, J.; Liu, T. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes. Nanoscale 2015, 7, 1037–1046. [Google Scholar] [CrossRef]
- Correa, J.D.; Orellana, P.A.; Pacheco, M. Optoelectronic properties of van der waals hybrid structures: Fullerenes on graphene nanoribbons. Nanomaterials 2017, 7, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharissova, O.V.; Kharisov, B.I.; Gonzalez, C.M.O. Raman Imaging Evidence for Mechanical/Tribological Quasi-Steady State in GO-Strengthening Polyurethane/Epoxy Interpenetrating Polymer Network. Ind. Eng. Chem. Res. 2019, 58, 3921. [Google Scholar] [CrossRef]
- Bronner, C.; Durr, R.A.; Rizzo, D.J.; Lee, Y.-L.; Marangoni, T.; Kalayjian, A.M.; Rodriguez, H.; Zhao, W.; Louie, S.G.; Fischer, F.R.; et al. Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions. ACS Nano 2018, 12, 2193. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, J.; Gaur, A. A tight-binding study of the electron transport through single-walled carbon nanotube–graphene hybrid nanostructures. J. Chem. Phys. 2021, 155, 244104. [Google Scholar] [CrossRef]
- Xia, K.; Zhan, H.; Gu, Y. Graphene and Carbon Nanotube Hybrid Structure: A Review. Procedia IUTAM 2017, 21, 94–101. [Google Scholar] [CrossRef]
- Park, S.-J.; Deshmukh, M.A.; Kang, B.-C.; Jeon, J.-Y.; Chen, C.; Ha, T.-J. A Review of Advanced Electronic Applications Based on Carbon Nanomaterials. ECS J. Solid State Sci. Technol. 2020, 9, 071002. [Google Scholar] [CrossRef]
- Tenorio, M.; Moreno, C.; Febrer, P.; Castro-Esteban, J.; Ordejón, P.; Pena, D.; Pruneda, M.; Mugarza, A. Atomically Sharp Lateral Superlattice Heterojunctions Built-In Nitrogen-Doped Nanoporous Graphene. Adv. Mater. 2022, 34, 2110099. [Google Scholar] [CrossRef]
- Slepchenkov, M.M.; Barkov, P.V.; Glukhova, O.E. Hybrid Films Based on Bilayer Graphene and Single-Walled Carbon Nanotubes: Simulation of Atomic Structure and Study of Electrically Conductive Properties. Nanomaterials 2021, 11, 1934. [Google Scholar] [CrossRef]
- Kuang, J.; Dai, Z.; Liu, L.; Yang, Z.; Jinc, M.; Zhang, Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale 2015, 7, 9252–9260. [Google Scholar] [CrossRef] [PubMed]
- Felix, A.B.; Orellana, P.; Pacheco, M.; Latgé, A. Negative differential resistance in hybrid carbon-based structures. Phys. Rev. B 2019, 99, 195442. [Google Scholar] [CrossRef]
- Evlashin, S.A.; Tarkhov, M.A.; Chernodubov, D.A.; Inyushkin, A.V.; Pilevsky, A.A.; Dyakonov, P.V.; Pavlov, A.A.; Suetin, N.V.; Akhatov, I.S.; Perebeinos, V. Negative Differential Resistance in Carbon-Based Nanostructures. Phys. Rev. Appl. 2021, 15, 054057. [Google Scholar] [CrossRef]
- Lee, C.-H.; Yang, C.-K.; Lin, M.-F.; Chang, C.-P.; Su, W.-S. Structural and electronic properties of graphenenanotube–nanoribbon hybrids. Phys. Chem. Chem. Phys. 2011, 13, 3925. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Rosales, L.; Pacheco, M.; Barticevic, Z.; Latgé, A.; Orellana, P.A. Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology 2008, 19, 065402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales, L.; Pacheco, M.; Barticevic, Z.; Latgé, A.; Orellana, P.A. Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology 2009, 20, 095705. [Google Scholar] [CrossRef]
- Ritter, C.; Makler, S.S.; Latgé, A. Energy-gap modulations of graphene ribbons under external fields: A theoretical study. Phys. Rev. B 2008, 77, 195443. [Google Scholar] [CrossRef]
- Torres, V.; Leon, C.; Farias, D.; Latgé, A. Gap engineering in strained fold-like armchair graphene nanoribbons. Phys. Rev. B 2017, 95, 045425. [Google Scholar] [CrossRef] [Green Version]
- Torres, V.; Farias, D.; Latgé, A. Tuning transport properties of graphene three-terminal structures by mechanical deformation. Phys. Rev. B 2018, 97, 165429. [Google Scholar] [CrossRef]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Orellana, P.A.; Rosales, L.; Chico, L.; Pacheco, M. Spin-polarized electrons in bilayer graphene ribbons. J. Appl. Phys. 2013, 113, 213710. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, K.; Sasaki, K.-I.; Nakanishi, T.; Enoki, T.T. Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 2010, 11, 054504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felix, A.B.; Pacheco, M.; Orellana, P.; Latgé, A. Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures. Nanomaterials 2022, 12, 3475. https://doi.org/10.3390/nano12193475
Felix AB, Pacheco M, Orellana P, Latgé A. Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures. Nanomaterials. 2022; 12(19):3475. https://doi.org/10.3390/nano12193475
Chicago/Turabian StyleFelix, Antonio Bernardo, Monica Pacheco, Pedro Orellana, and Andrea Latgé. 2022. "Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures" Nanomaterials 12, no. 19: 3475. https://doi.org/10.3390/nano12193475
APA StyleFelix, A. B., Pacheco, M., Orellana, P., & Latgé, A. (2022). Vertical and In-Plane Electronic Transport of Graphene Nanoribbon/Nanotube Heterostructures. Nanomaterials, 12(19), 3475. https://doi.org/10.3390/nano12193475