Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces
Abstract
:1. Introduction
2. Design and Results
2.1. Diagram of Geometric Phase Nanohole Metasurfaces
2.2. Theoretical Explanation
3. Further Exploration
3.1. Arbitrary-Order and Multichannel Methods to Solve the Problems of Low Resolution and Large Crosstalk
3.2. Design of Two-Channel Vortex Generator with the Same Propagation Direction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. FDTD Solutions 2018a Simulation Setting
References
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, A.; Liu, J.; Kildishev, A.; Shalaev, V. Photonic spin hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015, 2, 860–863. [Google Scholar] [CrossRef]
- Bliokh, K. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction. Phys. Rev. Lett. 2021, 126, 243601. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Ginzburg, P.; Rodríguezfortuño, F.; Wurtz, G.; Zayats, A. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 2014, 5, 5327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Wang, J.; Strain, M.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.; Thompson, M.; Yu, S. Integrated compact optical vortex beam emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, Y.; Ye, J.; Han, Y.; Sun, M. Wavelength and polarization multiplexed optical vortex demultiplexer. J. Phys. D Appl. Phys. 2019, 52, 375104. [Google Scholar] [CrossRef]
- Karabchevsky, A. On-chip optical vortex-based nanophotonic detectors. Light Sci. Appl. 2020, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Padhy, P.; Hesselink, L. Solenoidal optical forces from a plasmonic Archimedean spiral. Phys. Rev. A 2019, 100, 013857. [Google Scholar] [CrossRef]
- Wen, D.; Crozier, K. Metasurfaces 2.0: Laser-integrated and with vector field control. APL Photonics 2021, 6, 08090. [Google Scholar] [CrossRef]
- Pandey, A.; Larrieu, T.; Dovillaire, G.; Kazamias, S.; Guilbaud, O. Shack–Hartmann wavefront sensing of ultrashort optical vortices. Sensors 2021, 22, 132. [Google Scholar] [CrossRef]
- Han, J.; Intaravanne, Y.; Ma, A.; Wang, R.; Li, S.; Li, Z.; Chen, S.; Li, J.; Chen, X. Optical metasurfaces for generation and superposition of optical ring vortex beams. Laser Photonics Rev. 2020, 14, 2000146. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, M.; Wang, J.; Zhang, Y.; Chen, A.; Guan, F.; Liu, X.; Shi, L.; Zi, J. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics 2020, 14, 623–628. [Google Scholar] [CrossRef]
- Bouchard, F.; Leon, I.; Schulz, S.; Upham, J.; Karimi, E.; Boyd, R. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 2014, 105, 101905. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wei, Y.; Zhao, T.; Liu, S.; Su, R.; Yao, B.; Yu, Y.; Liu, J.; Wang, X. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 2021, 16, 302–307. [Google Scholar] [CrossRef]
- Tsai, W.; Huang, J.; Huang, C. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett. 2014, 14, 547–552. [Google Scholar] [CrossRef]
- Wang, D.; Liu, F.; Liu, T.; Sun, S.; He, Q.; Zhou, L. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl. 2021, 10, 67. [Google Scholar] [CrossRef]
- Jin, J.; Pu, M.; Wang, Y.; Li, X.; Ma, X.; Luo, J.; Zhao, Z.; Gao, P.; Luo, X. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial. Adv. Mater. Technol. 2017, 2, 1600201. [Google Scholar] [CrossRef]
- Guo, K.; Liu, Y.; Chen, L.; Wei, Z.; Liu, H. Multifunctional optical vortex beam generator via cross-phase based on metasurface. Nanomaterials 2022, 12, 653. [Google Scholar] [CrossRef]
- Bao, Y.; Ni, J.; Qiu, C. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater. 2020, 32, 1905659. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater. 2020, 32, 1805912. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Ji, C.; Chen, S.; Li, X.; Zhang, X.; Yao, Y.; Li, J. Fano-enhanced circular dichroism in deformable stereo metasurfaces. Adv. Mater. 2020, 32, 1907077. [Google Scholar] [CrossRef]
- Ding, F.; Chen, Y.; Bozhevolnyi, S. Focused vortex-beam generation using gap-surface plasmon metasurfaces. Nanophotonics 2020, 9, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Berry, M. The adiabatic phase and pancharatnam phase for polarized-light. J. Mod. Opt. 1987, 34, 1401–1407. [Google Scholar] [CrossRef]
- Stella, U.; Grosjean, T.; Leo, N.; Boarino, L.; Munzert, P.; Lakowicz, J.; Descrovi, E. Vortex beam generation by spin-orbit interaction with bloch surface waves. ACS Photonics 2020, 7, 774–783. [Google Scholar] [CrossRef]
- Sun, L.; Bai, B.; Wang, J.; Zhang, M.; Zhang, X.; Song, X.; Huang, L. Probing the photonic spin-orbit interactions in the near field of nanostructures. Adv. Funct. Mater. 2019, 29, 1902286. [Google Scholar] [CrossRef]
- Gong, S.; Alpeggiani, F.; Sciacca, B.; Garnett, E.; Kuipers, L. Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science 2018, 359, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, M.; Mei, S.; Hussain, S.; Huang, K.; Siew, S.; Zhang, L.; Zhang, T.; Ling, X.; Liu, H.; Teng, J.; et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 2016, 28, 2533–2539. [Google Scholar] [CrossRef]
- Cui, T.; Bai, B.; Sun, H. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 2019, 29, 1806692. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Zhang, L.; Wang, G.; Zhang, L.; Liu, M.; Zeng, C.; Wang, L.; Sun, Q.; Zhao, W.; et al. Efffcient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface. Adv. Opt. Mater. 2020, 8, 1901666. [Google Scholar] [CrossRef]
- Johnson, P.; Christy, R. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Jin, J.; Li, X.; Pu, M.; Guo, Y.; Gao, P.; Xu, M.; Zhang, Z.; Luo, X. Angular-multiplexed multichannel optical vortex arrays generators based on geometric metasurface. iScience 2021, 24, 102107. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, X.; Muhlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012, 12, 5750–5755. [Google Scholar] [CrossRef]
- Karimi, E.; Schulz, S.; Leon, I.; Qassim, H.; Upham, J.; Boyd, R. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 2014, 3, e167. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, X.; Gao, J. Spin-selective second-harmonic vortex beam generation with Babinet-inverted plasmonic metasurfaces. Adv. Opt. Mater. 2018, 6, 1800646. [Google Scholar] [CrossRef]
- Nalimov, A.; Kotlyar, V. Ultra-thin, short-focus, and high-aperture metalens for generating and detecting laser optical vortices. Nanomaterials 2022, 12, 2602. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Yang, X. Optical vortex transmutation with geometric metasurfaces of rotational symmetry breaking. Adv. Opt. Mater. 2019, 7, 1901152. [Google Scholar] [CrossRef]
- Yao, A.; Padgett, M. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef] [Green Version]
- Zdagkas, A.; McDonnell, C.; Deng, J.; Shen, Y.; Li, G.; Ellenbogen, T.; Papasimakis, N.; Zheludev, N. Observation of toroidal pulses of light. Nature 2022, 16, 523–528. [Google Scholar]
- Jiang, Q.; Bao, Y.; Li, J.; Tian, L.; Cui, T.; Sun, L.; Du, B.; Li, B.; Bai, B.; Wang, J.; et al. Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res. 2020, 8, 986–994. [Google Scholar] [CrossRef]
- Devlin, R.; Ambrosio, A.; Rubin, N.; Mueller, J.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896–900. [Google Scholar] [CrossRef]
- Ahmed, H.; Kim, H.; Zhang, Y.; Intaravanne, Y.; Jang, J.; Rho, J.; Chen, S.; Chen, X. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics 2022, 11, 941–956. [Google Scholar] [CrossRef]
[nm] | [nm] | [nm] | h [nm] | H (Glass) [μm] | R (When = 12) [μm] | R (When = 24) [μm] |
---|---|---|---|---|---|---|
300 | 95 | 50 | 80 | 2 | 0.68 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Yang, W.; Jin, L.; Shangguan, J.; Wang, Y.; Cui, T.; Liang, K.; Yu, L. Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces. Nanomaterials 2022, 12, 3476. https://doi.org/10.3390/nano12193476
Sun Q, Yang W, Jin L, Shangguan J, Wang Y, Cui T, Liang K, Yu L. Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces. Nanomaterials. 2022; 12(19):3476. https://doi.org/10.3390/nano12193476
Chicago/Turabian StyleSun, Qing’an, Wangying Yang, Lei Jin, Jingcheng Shangguan, Yilin Wang, Tong Cui, Kun Liang, and Li Yu. 2022. "Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces" Nanomaterials 12, no. 19: 3476. https://doi.org/10.3390/nano12193476
APA StyleSun, Q., Yang, W., Jin, L., Shangguan, J., Wang, Y., Cui, T., Liang, K., & Yu, L. (2022). Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces. Nanomaterials, 12(19), 3476. https://doi.org/10.3390/nano12193476