How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
| thermal conductivity | |
| cutoff radius | |
| NN | nearest neighbor |
| reduced Planck constant | |
| phonon frequency | |
| Boltzmann constant | |
| T | temperature |
| system volume | |
| equilibrium Bose–Einstein distribution | |
| phonon group velocity | |
| phonon lifetime | |
| mode specific heat | |
| Cartesian coordinate directions | |
| m | atomic mass |
| i, j, k | atomic indices |
| thermal conductivities from the iterative solution | |
| thermal conductivities from the relaxation time approximation | |
| normal scattering rates | |
| Umklapp scattering rates | |
| averaged normal scattering rates | |
| averaged Umklapp scattering rates |
References
- Chen, J.; Xu, X.; Zhou, J.; Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 2022, 94, 025002. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Zhang, Z.; Li, D.; Chen, J.; Zhang, G. Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Ann. Phys. 2019, 531, 1800437. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129. [Google Scholar] [CrossRef]
- He, J.; Ouyang, Y.; Yu, C.; Jiang, P.; Ren, W.; Chen, J. Lattice thermal conductivity of β12 and x3 borophene. Chin. Phys. B 2020, 29, 126503. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, J.; Wan, X.; Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J. Phys. 2021, 23, 033005. [Google Scholar] [CrossRef]
- Ren, W.; Ouyang, Y.; Jiang, P.; Yu, C.; He, J.; Chen, J. The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure. Nano Lett. 2021, 21, 2634–2641. [Google Scholar] [CrossRef]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L.-D. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef]
- He, J.; Hu, Y.; Li, D.; Chen, J. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. 2022, 15, 3804–3811. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Li, B. Phonon thermal conduction in novel 2D materials. J. Phys. Condens. Matter. 2016, 28, 483001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Coherent thermal transport in nano-phononic crystals: An overview. APL Mater. 2021, 9, 081102. [Google Scholar] [CrossRef]
- An, M.; Chen, D.; Ma, W.; Hu, S.; Zhang, X. Directly visualizing the crossover from incoherent to coherent phonons in two-dimensional periodic MoS2/MoSe2 arrayed heterostructure. Int. J. Heat Mass Transf. 2021, 178, 121630. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Generalized decay law for particlelike and wavelike thermal phonons. Phys. Rev. B 2021, 103, 184307. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Heat Conduction Theory Including Phonon Coherence. Phys. Rev. Lett. 2022, 128, 015901. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. How coherence is governing diffuson heat transfer in amorphous solids. NPJ Comput. Mater. 2022, 8, 96. [Google Scholar] [CrossRef]
- Gupta, R.; Dongre, B.; Bera, C.; Carrete, J. The Effect of Janus Asymmetry on Thermal Transport in SnSSe. J. Phys. Chem. C 2020, 124, 17476–17484. [Google Scholar] [CrossRef]
- Lu, S.; Ren, W.; He, J.; Yu, C.; Jiang, P.; Chen, J. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys. Rev. B 2022, 105, 165301. [Google Scholar] [CrossRef]
- Feng, T.; Lindsay, L.; Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 2017, 96, 161201. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 2018, 97, 045202. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Y.; He, J.; Lu, S.; Li, D.; Chen, J. Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett. 2022, 120, 132201. [Google Scholar] [CrossRef]
- Ouyang, Y.; Yu, C.; He, J.; Jiang, P.; Ren, W.; Chen, J. Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential. Phys. Rev. B 2022, 105, 115202. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, Y.; Cheng, Y.; Chen, J.; Li, N.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 2015, 595, 1–44. [Google Scholar] [CrossRef]
- Cepellotti, A.; Fugallo, G.; Paulatto, L.; Lazzeri, M.; Mauri, F.; Marzari, N. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 2015, 6, 6400. [Google Scholar] [CrossRef]
- Lee, S.; Broido, D.; Esfarjani, K.; Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 2015, 6, 6290. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, Y.; Guo, Y.; Nakayama, T.; Nomura, M.; Volz, S.; Chen, J. Hydrodynamic phonon transport in bulk crystalline polymers. Phys. Rev. B 2020, 102, 195302. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, J.; Song, B.; Chiloyan, V.; Li, M.; Liu, T.H.; Chen, G. Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite. Nano Lett. 2018, 18, 638–649. [Google Scholar] [CrossRef]
- Yu, C.; Ouyang, Y.; Chen, J. A perspective on the hydrodynamic phonon transport in two-dimensional materials. J. Appl. Phys. 2021, 130, 010902. [Google Scholar] [CrossRef]
- Lindsay, L.; Li, W.; Carrete, J.; Mingo, N.; Broido, D.A.; Reinecke, T.L. Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 2014, 89, 155426. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, J.; Li, B. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale 2017, 9, 14208–14214. [Google Scholar] [CrossRef]
- Lindsay, L.; Hua, C.; Ruan, X.L.; Lee, S. Survey of ab initio phonon thermal transport. Mater. Today Phys. 2018, 7, 106–120. [Google Scholar] [CrossRef]
- Taheri, A.; Pisana, S.; Singh, C.V. Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials. Phys. Rev. B 2021, 103, 235426. [Google Scholar] [CrossRef]
- Liu, P.-F.; Bo, T.; Xu, J.; Yin, W.; Zhang, J.; Wang, F.; Eriksson, O.; Wang, B.-T. First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides. Phys. Rev. B 2018, 98, 235426. [Google Scholar] [CrossRef]
- Taheri, A.; Da Silva, C.; Amon, C.H. Phonon thermal transport in β−NX(X = P,As,Sb) monolayers: A first-principles study of the interplay between harmonic and anharmonic phonon properties. Phys. Rev. B 2019, 99, 235425. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Z.; Chen, C.; Ouyang, Y.; Li, N.; Chen, J. Phononic Thermal Transport in Yttrium Hydrides Allotropes. Front. Mater. 2020, 7, 569090. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J.H. Effect of exchange–correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Comput. Mater. Sci. 2015, 110, 115–120. [Google Scholar] [CrossRef]
- Qin, G.; Hu, M. Accelerating evaluation of converged lattice thermal conductivity. NPJ Comput. Mater. 2018, 4, 3. [Google Scholar] [CrossRef]
- Xie, H.; Gu, X.; Bao, H. Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity. Comput. Mater. Sci. 2017, 138, 368–376. [Google Scholar] [CrossRef]
- Taheri, A.; Da Silva, C.; Amon, C.H. First-principles phonon thermal transport in graphene: Effects of exchange-correlation and type of pseudopotential. J. Appl. Phys. 2018, 123, 215105. [Google Scholar] [CrossRef]
- Qin, G.; Qin, Z.; Wang, H.; Hu, M. On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals. Comput. Mater. Sci. 2018, 151, 153–159. [Google Scholar] [CrossRef]
- Sun, Z.; Yuan, K.; Chang, Z.; Bi, S.; Zhang, X.; Tang, D. Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP3, GaP3, SbP3 and SnP3): A comprehensive first-principles study. Nanoscale 2020, 12, 3330–3342. [Google Scholar] [CrossRef] [PubMed]
- Lindroth, D.O.; Erhart, P. Thermal transport in van der Waals solids from first-principles calculations. Phys. Rev. B 2016, 94, 115205. [Google Scholar] [CrossRef]
- Kundu, A.; Yang, X.; Ma, J.; Feng, T.; Carrete, J.; Ruan, X.; Madsen, G.K.H.; Li, W. Ultrahigh Thermal Conductivity of theta-Phase Tantalum Nitride. Phys. Rev. Lett. 2021, 126, 115901. [Google Scholar] [CrossRef]
- Lee, S.; Esfarjani, K.; Luo, T.; Zhou, J.; Tian, Z.; Chen, G. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 2014, 5, 4525. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A.; Reinecke, T.L. Ab initiothermal transport in compound semiconductors. Phys. Rev. B 2013, 87, 165201. [Google Scholar] [CrossRef]
- Wang, N.; Shen, C.; Sun, Z.; Xiao, H.; Zhang, H.; Yin, Z.; Qiao, L. High-Temperature Thermoelectric Monolayer Bi2TeSe2 with High Power Factor and Ultralow Thermal Conductivity. ACS Appl. Energ. Mater. 2022, 5, 2564–2572. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 3865–3868. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 2016, 93, 045202. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, X.; Feng, T.; Bao, H.; Ruan, X. First-principles predictions of temperature-dependent infrared dielectric function of polar materials by including four-phonon scattering and phonon frequency shift. Phys. Rev. B 2020, 101, 125416. [Google Scholar] [CrossRef]
- Feng, T.; O’Hara, A.; Pantelides, S.T. Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials. Nano Energy 2020, 75, 104916. [Google Scholar] [CrossRef]
- Yang, X.; Feng, T.; Li, J.; Ruan, X. Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature. Phys. Rev. B 2019, 100, 245203. [Google Scholar] [CrossRef]
- Gu, X.; Fan, Z.; Bao, H.; Zhao, C.Y. Revisiting phonon-phonon scattering in single-layer graphene. Phys. Rev. B 2019, 100, 064306. [Google Scholar] [CrossRef]
- Xie, H.; Ouyang, T.; Germaneau, É.; Qin, G.; Hu, M.; Bao, H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 2016, 93, 075404. [Google Scholar] [CrossRef]
- Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, L.; Broido, D.A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82, 115427. [Google Scholar] [CrossRef]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Gu, X.; Yang, R. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. J. Appl. Phys. 2015, 117, 025102. [Google Scholar] [CrossRef]
- Qin, G.; Qin, Z.; Yue, S.Y.; Yan, Q.B.; Hu, M. External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale 2017, 9, 7227–7234. [Google Scholar] [CrossRef]
- Han, Y.; Dong, J.; Qin, G.; Hu, M. Phonon transport in the ground state of two-dimensional silicon and germanium. RSC Adv. 2016, 6, 69956–69965. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Luo, T. The impact of hydrogenation on the thermal transport of silicene. 2D Mater. 2017, 4, 025002. [Google Scholar] [CrossRef]
- Parrish, K.D.; Jain, A.; Larkin, J.M.; Saidi, W.A.; McGaughey, A.J.H. Origins of thermal conductivity changes in strained crystals. Phys. Rev. B 2014, 90, 235201. [Google Scholar] [CrossRef]
- Broido, D.A.; Malorny, M.; Birner, G.; Mingo, N.; Stewart, D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922. [Google Scholar] [CrossRef]
- Fulkerson, W.; Moore, J.P.; Williams, R.K.; Graves, R.S.; McElroy, D.L. Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 °K. Phys. Rev. 1968, 167, 765–782. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3 °K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Shanks, H.R.; Maycock, P.D.; Sidles, P.H.; Danielson, G.C. Thermal Conductivity of Silicon from 300 to 1400 °K. Phys. Rev. 1963, 130, 1743–1748. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, D.; Zhang, H.; Shao, H.; Ni, G.; Zhu, Y.; Zhu, H. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale 2017, 9, 7397–7407. [Google Scholar] [CrossRef] [PubMed]





Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Lu, S.; Ouyang, Y.; Chen, J. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials 2022, 12, 2854. https://doi.org/10.3390/nano12162854
Jiang J, Lu S, Ouyang Y, Chen J. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials. 2022; 12(16):2854. https://doi.org/10.3390/nano12162854
Chicago/Turabian StyleJiang, Jianhui, Shuang Lu, Yulou Ouyang, and Jie Chen. 2022. "How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials" Nanomaterials 12, no. 16: 2854. https://doi.org/10.3390/nano12162854
APA StyleJiang, J., Lu, S., Ouyang, Y., & Chen, J. (2022). How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials, 12(16), 2854. https://doi.org/10.3390/nano12162854

