Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanoporous Cu (NPC)
2.2. Synthesis of Co3O4@NP-CuO Composite
2.3. Microstructure Characterization
2.4. Degradation Experiments
3. Results and Discussion
3.1. Design of Self-Supporting Co3O4@NP-CuO Composite
3.2. Photocatalytic Degradation Activity of Co3O4@NP-CuO Composite
3.3. Degradation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.J.; Xue, B.; Wu, G.Y.; Liu, Y.P.; Zhang, H.Q.; Ma, D.Y.; Zuo, J.C. A Novel Flower-Like Ag/AgCl/BiOCOOH Ternary Heterojunction Photocatalyst: Facile Construction and Its Superior Photocatalytic Performance for the Removal of Toxic Pollutants. Nanomaterials 2019, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Uthirakumar, P.; Devendiran, M.; Kuznetsov, A.Y.; Kim, G.C.; Lee, I.H. Efficient, recyclable, and affordable daylight induced Cu/Cu2O/CuI photocatalyst via an inexpensive iodine sublimation process. Appl. Surf. Sci. 2021, 537, 147007. [Google Scholar] [CrossRef]
- Yuan, X.Q.; Pei, F.; Luo, X.L.; Hu, H.T.; Qian, H.M.; Wen, P.; Miao, K.K.; Guo, S.F.; Wang, W.; Feng, G.D. Fabrication of ZnO/Au@Cu2O heterojunction towards deeply oxidative photodegradation of organic dyes. Sep. Purif. Technol. 2021, 262, 118301. [Google Scholar] [CrossRef]
- Qiang, T.T.; Chen, L.; Xia, Y.J.; Qin, X.T. Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation. J. Clean. Prod. 2021, 291, 125213. [Google Scholar] [CrossRef]
- Nohynek, G.; Hueber-Becker, F.; Meulingy, W.; Dufour, E.; Bolt, H.; Debie, A. Occupational exposure of hairdressers to [C-14]-para-phenylenediamine-containing oxidative hair dyes. Toxicol. Lett. 2007, 172, S30–S31. [Google Scholar] [CrossRef]
- Cassano, A.; Molinari, R.; Romano, M.; Drioli, E. Treatment of aqueous effluents of the leather industry by membrane processes A review. J. Membr. Sci. 2001, 181, 111–126. [Google Scholar] [CrossRef]
- Albano, G.; Colli, T.; Biver, T.; Aronica, L.A.; Pucci, A. Photophysical properties of new p-phenylene- and benzodithio-phene-based fluorophores for luminescent solar concentrators (LSCs). Dyes Pigm. 2020, 178, 108368. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Chen, Z.X.; Zhang, J.; Gong, L.; Wang, Y.X.; Zhao, H.Q.; Mu, Y. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere 2018, 192, 372–378. [Google Scholar] [CrossRef]
- Sakkayawong, N.; Thiravetyan, P.; Nakbanpote, W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J. Colloid Interface Sci. 2005, 286, 36–42. [Google Scholar] [CrossRef]
- Liu, L.M.; Chen, Z.; Zhang, J.W.; Shan, D.; Wu, Y.; Bai, L.M.; Wang, B.Q. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Li, L.; Han, Q.; Wang, L.; Liu, B.; Wang, K.K.; Wang, Z.Y. Dual roles of MoS2 nanosheets in advanced oxidation Processes: Activating permonosulfate and quenching radicals. Chem. Eng. J. 2022, 440, 135866. [Google Scholar] [CrossRef]
- Fan, J.X.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core-shell bio-nanocomposites. Chemosphere 2018, 191, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Akerdi, A.G.; Bahrami, S.H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Xin, L.; Hu, J.W.; Xiang, Y.Q.; Li, C.F.; Fu, L.Y.; Li, Q.H.; Wei, X.H. Carbon-Based Nanocomposites as Fenton-Like Catalysts in Wastewater Treatment Applications: A Review. Materials 2021, 14, 2643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Tian, W.J.; Zhou, L.; Sun, H.Q.; Tade, M.; Wang, S.B. Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl. Catal. B Environ. 2018, 223, 2–9. [Google Scholar] [CrossRef]
- Chen, Z.F.; Pan, J.Q.; Mei, J.; Yu, Q.; Wang, P.H.; Wang, P.P.; Wang, J.J.; Song, C.S.; Zheng, Y.Y.; Li, C.R. Ternary Co3O4/CdS/SrTiO3 core-shell pn junctions toward enhanced photocatalytic hydrogen production activity. J. Environ. Chem. Eng. 2021, 9, 104895. [Google Scholar] [CrossRef]
- Wang, L.; Wan, J.W.; Zhao, Y.S.; Yang, N.L.; Wang, D. Hollow Multi-Shelled Structures of Co3O4 Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241. [Google Scholar] [CrossRef]
- Bilge, S.; Karadurmus, L.; Atici, E.B.; Sinag, A.; Ozkan, S.A. A novel electrochemical sensor based on magnetic Co3O4 nanoparticles/carbon recycled from waste sponges for sensitive determination of anticancer ruxolitinib. Sens. Actuator B Chem. 2022, 367, 132127. [Google Scholar] [CrossRef]
- You, D.J.; Lou, J.Y.; Li, X.Q.; Zhou, Y.L.; Sun, X.Q.; Wang, X.L. Investigation of advanced catalytic effect of Co3O4 nanosheets modified carbon felts as vanadium flow battery electrodes. J. Power Sources 2021, 494, 229775. [Google Scholar] [CrossRef]
- Bronzato, J.D.; Tofanello, A.; Oliveira, M.T.; Bettini, J.; Brito, A.M.M.; Costa, S.A.; Costa, S.M.; Lanfredi, A.J.C.; Nascimento, O.R.; Nantes-Cardoso, I.L. Virucidal, photocatalytic and chiromagnetic cobalt oxide quantum dots. Appl. Surf. Sci. 2022, 576, 151847. [Google Scholar] [CrossRef]
- Liu, D.L.; Pervaiz, E.; Adimi, S.; Thomas, T.; Qu, F.D.; Huang, C.Z.; Wang, R.; Jiang, H.; Yang, M.H. Theoretical study on W-Co3O4 surface: Acetone adsorption and sensing mechanism. Appl. Surf. Sci. 2021, 566, 150642. [Google Scholar] [CrossRef]
- Wang, Y.L.; Yu, D.; Wang, W.; Gao, P.; Zhong, S.; Zhang, L.S.; Zhao, Q.Q.; Liu, B.J. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Sep. Purif. Technol. 2020, 239, 116562. [Google Scholar] [CrossRef]
- Cho, E.C.; Chang-Jian, C.W.; Huang, J.H.; Huang, T.Y.; Wu, N.J.; Li, M.T.; Chen, Y.L.; Hsu, S.C.; Weng, H.C.; Lee, K.C. Preparation of Ni(OH)2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism. Chemosphere 2022, 300, 134484. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.L.; Cao, S.; Wu, Z.J.; Ji, Y.L.; Mi, Y.; Wu, X.C.; Liu, X.F.; Piao, L.Y. The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. Nano Energy 2017, 41, 488–493. [Google Scholar] [CrossRef]
- Xiao, F.X. Construction of Highly Ordered ZnO-TiO2 Nanotube Arrays (ZnO/TNTs) Heterostructure for Photocatalytic Application. ACS Appl. Mater. Interfaces 2012, 4, 7054–7062. [Google Scholar] [CrossRef] [PubMed]
- Bisaria, K.; Sinha, S.; Singh, R.; Iqbal, H.M.N. Recent advances in structural modifications of photo-catalysts for organic pollutants degradation-A comprehensive review. Chemosphere 2021, 284, 131263. [Google Scholar] [CrossRef]
- Qi, K.Z.; Cheng, B.; Yu, J.G.; Ho, W.K. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloy. Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Meng, A.Y.; Zhang, J.; Xu, D.F.; Cheng, B.; Yu, J.G. Enhanced photocatalytic H2 production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Appl. Catal. B Environ. 2016, 198, 286–294. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.Y.; Ding, T.; Feng, B.; Bao, Z.J.; Hu, J.G. Well-Steered Charge-Carrier Transfer in 3D Branched CuxO/ZnO@Au Heterostructures for Efficient Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2015, 7, 26819–26827. [Google Scholar] [CrossRef]
- Jin, C.Y.; Wang, M.; Li, Z.L.; Kang, J.; Zhao, Y.; Han, J.; Wu, Z.M. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance. Chem. Eng. J. 2020, 398, 125569. [Google Scholar] [CrossRef]
- Chahar, D.; Taneja, S.; Bisht, S.; Kesarwani, S.; Thakur, P.; Thakur, A.; Sharma, P.B. Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloy. Compd. 2021, 851, 156878. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, Z.W.; Li, R.N.; Guo, J.L.; Li, Y.; Zhu, J.M.; Xie, X.Y. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Dan, Z.H.; Liang, Y.F.; Wang, Y.; Qin, F.X.; Chang, H. Asynchronous Evolution of Nanoporous Silver on Dual-Phase Ag-Sn Alloys by Potentiostatic Dealloying in Hydrochloric Acid Solution. Nanomaterials 2019, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Xu, W.C.; Cao, S.; Zhu, S.L.; Liang, Y.Q.; Cui, Z.D.; Yang, X.J.; Li, Z.Y.; Wu, S.L.; Inoue, A.; et al. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Appl. Catal. B Environ. 2019, 246, 156–165. [Google Scholar] [CrossRef]
- Wada, T.; Yubuta, K.; Inoue, A.; Kato, H. Dealloying by metallic melt. Mater. Lett. 2011, 65, 1076–1078. [Google Scholar] [CrossRef]
- Pang, F.J.; Wang, Z.F.; Zhang, K.; He, J.; Zhang, W.Q.; Guo, C.X.; Ding, Y. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy 2019, 58, 834–841. [Google Scholar] [CrossRef]
- Wang, R.Y.; Xu, C.X.; Bi, X.X.; Ding, Y. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 2012, 5, 5281–5286. [Google Scholar] [CrossRef]
- Li, R.; Liu, X.J.; Wu, R.Y.; Wang, J.; Li, Z.B.; Chan, K.C.; Wang, H.; Wu, Y.; Lu, Z.P. Flexible Honeycombed Nanoporous/Glassy Hybrid for Efficient Electrocatalytic Hydrogen Generation. Adv. Mater. 2019, 31, 1904989. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhu, S.L.; Liang, Y.Q.; Li, Z.Y.; Cui, Z.D.; Yang, X.J.; Inoue, A. Nanoporous CuS with excellent photocatalytic property. Sci. Rep. 2015, 5, 18125. [Google Scholar] [CrossRef]
- Wang, N.; Pan, Y.; Wu, S.K.; Zhang, E.M.; Dai, W.J. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses. Appl. Surf. Sci. 2018, 428, 328–337. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.Y.; Zhang, Q.; Qin, C.L.; Zhao, W.M.; Wang, Z.F.; Inoue, A. Ultrafine Cu2O/CuO nanosheet arrays integrated with NPC/BMG composite rod for photocatalytic degradation. Appl. Surf. Sci. 2019, 483, 285–293. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.F.; Zhang, Q.; Qin, C.L.; Inoue, A.; Guo, W.B. Formation and evolution of ultrathin Cu2O nanowires on NPC ribbon by anodizing for photocatalytic degradation. Appl. Surf. Sci. 2020, 506, 144819. [Google Scholar] [CrossRef]
- Qin, S.Y.; Liu, Y.; Liu, S.M.; Wang, X.Y.; Li, Y.Y.; Qin, C.L.; Wang, Z.F.; Li, M. Self-standing porous Au/CuO nanowires with remarkably enhanced visible light absorption and photocatalytic performance. Appl. Surf. Sci. 2022, 594, 153443. [Google Scholar] [CrossRef]
- Sun, X.H.; Zheng, D.H.; Pan, F.D.; Qin, C.L.; Li, Y.Y.; Wang, Z.F.; Liu, Y. 3D nanoporous Ni@NiO/metallic glass sandwich electrodes without corrosion cracks for flexible supercapacitor application. Appl. Surf. Sci. 2021, 545, 149043. [Google Scholar] [CrossRef]
- Zhao, F.; Zheng, D.H.; Liu, Y.; Pan, F.D.; Deng, Q.B.; Qin, C.L.; Li, Y.Y.; Wang, Z.F. Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors. Chem. Eng. J. 2021, 415, 128871. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, D.H.; Liu, S.M.; Qin, S.Y.; Sun, X.H.; Wang, Z.F.; Qin, C.L.; Li, Y.Y.; Zhou, J. Flexible porous Ni(OH)2 nanopetals sandwiches for wearable non-enzyme glucose sensors. Appl. Surf. Sci. 2021, 552, 149529. [Google Scholar] [CrossRef]
- Zheng, D.H.; Li, M.; Li, Y.Y.; Qin, C.L.; Wang, Y.C.; Wang, Z.F. A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. Beilstein J. Nanotechnol. 2019, 10, 281–293. [Google Scholar] [CrossRef]
- Pradhan, A.C.; Uyar, T. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance. ACS Appl. Mater. Interfaces 2017, 9, 35757–35774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Man, L.Y.; Qin, C.L.; Wang, Z.F.; Zhao, W.M.; Li, Y.Y. Flexible Free-Standing CuxO/Ag2O (x = 1, 2) Nanowires Integrated with Nanoporous Cu-Ag Network Composite for Glucose Sensing. Nanomaterials 2020, 10, 357. [Google Scholar] [CrossRef]
- Rabani, I.; Zafar, R.; Subalakshmi, K.; Kim, H.S.; Bathula, C.; Seo, Y.S. A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. J. Hazard. Mater. 2021, 407, 124360. [Google Scholar] [CrossRef]
- Xie, X.B.; Ni, C.; Lin, Z.H.; Wu, D.; Sun, X.Q.; Zhang, Y.P.; Wang, B.; Du, W. Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 2020, 396, 125205. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, M.M.; Li, B.E.; Li, Y.Y.; Wang, Z.F. Ag particles modified CuxO (x = 1, 2) nanowires on nanoporous Cu-Ag bimetal network for antibacterial applications. Mater. Lett. 2020, 258, 126823. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, W.; Asami, K.; Kimura, H.; Wang, X.M.; Inoue, A. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 2006, 54, 3713–3719. [Google Scholar] [CrossRef]
- Qin, C.L.; Oak, J.J.; Ohtsu, N.; Asami, K.; Inoue, A. XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass. Acta Mater. 2007, 55, 2057–2063. [Google Scholar] [CrossRef]
- Qin, C.L.; Zheng, D.H.; Hu, Q.F.; Zhang, X.M.; Wang, Z.F.; Li, Y.Y.; Zhu, J.S.; Ou, J.Z.; Yang, C.H.; Wang, Y.C. Flexible integrated metallic glass-based sandwich electrodes for high-performance wearable all-solid-state supercapacitors. Appl. Mater. Today 2020, 19, 100539. [Google Scholar] [CrossRef]
- Yao, M.M.; Hu, Z.H.; Xu, Z.J.; Liu, Y.F. Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J. Alloy. Compd. 2015, 644, 721–728. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.W.; Ding, Y. Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B Environ. 2016, 198, 447–456. [Google Scholar] [CrossRef]
- Wang, S.S.; Liu, L. Fabrication of novel nanoporous copper powder catalyst by dealloying of ZrCuNiAl amorphous powders for the application of wastewater treatments. J. Hazard. Mater. 2017, 340, 445–453. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.; Huang, D.L.; Lai, C.; Zeng, G.M.; Huang, J.H.; Liu, Z.F.; Zhang, C.; Zhou, C.Y.; Qin, L.; et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values. Chem. Eng. J. 2019, 362, 865–876. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, C.; Qin, S.; Pan, F.; Li, Y.; Wang, Z.; Qin, C. Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation. Nanomaterials 2022, 12, 2850. https://doi.org/10.3390/nano12162850
Sun Y, Wang C, Qin S, Pan F, Li Y, Wang Z, Qin C. Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation. Nanomaterials. 2022; 12(16):2850. https://doi.org/10.3390/nano12162850
Chicago/Turabian StyleSun, Yuntao, Can Wang, Shengyao Qin, Fengda Pan, Yongyan Li, Zhifeng Wang, and Chunling Qin. 2022. "Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation" Nanomaterials 12, no. 16: 2850. https://doi.org/10.3390/nano12162850
APA StyleSun, Y., Wang, C., Qin, S., Pan, F., Li, Y., Wang, Z., & Qin, C. (2022). Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation. Nanomaterials, 12(16), 2850. https://doi.org/10.3390/nano12162850