The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrications
2.3. Measurements
3. Results
3.1. Morphology
3.2. Thermal Stability
3.3. Electrical Conductivity
3.4. Joule Heating Effect
3.5. Thermo-Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, R.J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Adv. Funct. Mater. 2014, 24, 3661–3682. [Google Scholar] [CrossRef]
- Chiodarelli, N.; Masahito, S.; Kashiwagi, Y.; Li, Y.L.; Arstila, K.; Richard, O.; Cott, D.J.; Heyns, M.; De Gendt, S.; Groeseneken, G.; et al. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 2011, 22, 085302. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef]
- Thamaraiselvan, C.; Wang, J.B.; James, D.K.; Narkhede, P.; Singh, S.P.; Jassby, D.; Tour, J.M.; Arnusch, C.J. Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Mater. Today 2020, 34, 115–131. [Google Scholar] [CrossRef]
- Xiang, R.; Inoue, T.; Zheng, Y.J.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D.M.; Gokhale, D.; Guo, J.; et al. One-dimensional van der Waals heterostructures. Science 2020, 367, 537–542. [Google Scholar] [CrossRef]
- Krasnikov, D.V.; Gubarev, V.V.; Novikov, I.V.; Kondrashov, V.A.; Starkov, A.V.; Krivokorytov, M.S.; Medvedev, V.V.; Gladush, Y.G.; Nasibulin, A.G. Renewable single-walled carbon nanotube membranes for extreme ultraviolet pellicle applications. Carbon 2022, 198, 364–370. [Google Scholar]
- Costa, P.M.F.J.; Gautam, U.K.; Bando, Y.; Golberg, D. Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2011, 2, 421. [Google Scholar] [CrossRef]
- Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174. [Google Scholar] [CrossRef]
- Deshpande, V.V.; Hsieh, S.; Bushmaker, A.W.; Bockrath, M.; Cronin, S.B. Spatially Resolved Temperature Measurements of Electrically Heated Carbon Nanotubes. Phys. Rev. Lett. 2009, 102, 105501. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Kane, C.L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944. [Google Scholar] [CrossRef] [PubMed]
- Baloch, K.H.; Voskanian, N.; Bronsgeest, M.; Cumings, J. Remote Joule heating by a carbon nanotube. Nat. Nanotechnol. 2012, 7, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Rotkin, S.V.; Perebeinos, V.; Petrov, A.G.; Avouris, P. An Essential Mechanism of Heat Dissipation in Carbon Nanotube Electronics. Nano Lett. 2009, 9, 1850–1855. [Google Scholar] [CrossRef]
- Allaoui, A.; Hoa, S.V.; Evesque, P.; Bai, J.B. Electronic transport in carbon nanotube tangles under compression: The role of contact resistance. Scripta Mater. 2009, 61, 628–631. [Google Scholar] [CrossRef]
- Collins, P.G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131. [Google Scholar] [CrossRef]
- Hada, M.; Hasegawa, T.; Inoue, H.; Takagi, M.; Omoto, K.; Chujo, D.; Iemoto, S.; Kuroda, T.; Morimoto, T.; Hayashi, T. One-minute Joule annealing enhances the thermoelectric properties of carbon nanotube yarns via the formation of graphene at the interface. ACS Appl. Energy Mater. 2019, 2, 7700–7708. [Google Scholar] [CrossRef]
- Romanov, S.A.; Alekseeva, A.A.; Khabushev, E.M.; Krasnikov, D.V.; Nasibulin, A.G. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating. Carbon 2020, 168, 193–200. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Kaskela, A.; Mustonen, K.; Anisimov, A.S.; Ruiz, V.; Kivisto, S.; Rackauskas, S.; Timmermans, M.Y.; Pudas, M.; Aitchison, B. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 2011, 5, 3214–3221. [Google Scholar] [CrossRef]
- Amatore, C.; Berthou, M.; Hebert, S. Fundamental principles of electrochemical ohmic heating of solutions. J. Electroanal. Chem. 1998, 457, 191–203. [Google Scholar] [CrossRef]
- Faruk, M.O.; Ahmed, A.; Jalil, M.A.; Islam, M.T.; Shamim, A.; Adak, B.; Hossain, M.M.; Mukhopadhyay, S. Functional textiles and composite based wearable thermal devices for Joule heating: Progress and perspectives. Appl. Mater. Today 2021, 23, 101025. [Google Scholar] [CrossRef]
- Park, J. Functional Fibers, Composites and Textiles Utilizing Photothermal and Joule Heating. Polymers 2020, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.N.; Liu, Y.X.; Li, M.L. Effect of Joule heating and current crowding on electromigration in mobile technology. Appl. Phys. Rev. 2017, 4, 011101. [Google Scholar] [CrossRef]
- Santini, C.A.; Vereecken, P.M.; Volodin, A.; Groeseneken, G.; De Gendt, S.; Van Haesendonck, C. A study of Joule heating-induced breakdown of carbon nanotube interconnects. Nanotechnology 2011, 22, 395202. [Google Scholar] [CrossRef]
- Bourbigot, S.; Flambard, X. Heat resistance and flammability of high performance fibres: A review. Fire Mater. 2002, 26, 155–168. [Google Scholar] [CrossRef]
- Gore, P.M.; Kandasubramanian, B. Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Ind. Eng. Chem. Res. 2018, 57, 16537–16563. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, L.H.; Tian, M.; Ning, N.Y.; Zhang, L.Q.; Wang, W.C. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. Eur. Polym. J. 2021, 147, 110352. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Jeon, G.W. Microstructure and Performance of Multiwalled Carbon Nanotube/m-Aramid Composite Films as Electric Heating Elements. ACS Appl. Mater. Interfaces 2013, 5, 6527–6534. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ding, X.Y.; Zhang, M.Y.; Wang, L. Scalable electric heating paper based on CNT/Aramid fiber with superior mechanical and electric heating properties. Compos. Part B Eng. 2021, 224, 109242. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.Y.; Yang, B.; Ding, X.Y.; Tan, J.J.; Song, S.X.; Nie, J.Y. Flexible, Robust, and Durable Aramid Fiber/CNT Composite Paper as a Multifunctional Sensor for Wearable Applications. ACS Appl. Mater. Interfaces 2021, 13, 5486–5497. [Google Scholar] [CrossRef]
- Aouraghe, M.A.; Xu, F.J.; Liu, X.H.; Qiu, Y.P. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos. Sci. Technol. 2019, 183, 107824. [Google Scholar] [CrossRef]
- Yan, J.; Jeong, Y.G. Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 2015, 106, 134–140. [Google Scholar] [CrossRef]
- Park, J.; Jeong, Y.G. Investigation of microstructure and electric heating behavior of hybrid polymer composite films based on thermally stable polybenzimidazole and multiwalled carbon nanotube. Polymer 2015, 59, 102–109. [Google Scholar] [CrossRef]
- An, J.E.; Jeong, Y.G. Structure and electric heating performance of graphene/epoxy composite films. Eur. Polym. J. 2013, 49, 1322–1330. [Google Scholar] [CrossRef]
- Yang, M.; Cao, K.Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E.M.; Kieffer, J.; Thouless, M.D.; Kotov, N.A. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block. ACS Nano 2011, 5, 6945–6954. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Cao, W.X.; Yue, M.L.; Hou, Y.; Han, J.C.; Yang, M. Strong and Stiff Aramid Nanofiber/Carbon Nanotube Nanocomposites. ACS Nano 2015, 9, 2489–2501. [Google Scholar] [CrossRef]
- Fan, J.C.; Shi, Z.X.; Zhang, L.; Wang, J.L.; Yin, J. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale 2012, 4, 7046–7055. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Bang, S.H.; Malakooti, M.H.; Sodano, H.A. Isolation of Aramid Nanofibers for High Strength and Toughness Polymer Nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 11167–11175. [Google Scholar] [CrossRef]
- Xie, F.; Jia, F.F.; Zhuo, L.H.; Lu, Z.Q.; Si, L.M.; Huang, J.Z.; Zhang, M.Y.; Ma, Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 2019, 11, 23382–23391. [Google Scholar] [CrossRef]
- Fan, J.C.; Shi, Z.X.; Tian, M.; Yin, J. Graphene-aramid nanofiber nanocomposite paper with high mechanical and electrical performance. Rsc. Adv. 2013, 3, 17664–17667. [Google Scholar] [CrossRef]
- Koo, M.Y.; Shin, H.C.; Suhr, J.; Lee, G.W. A Suggested Vacuum Bagging Process for the Fabrication of Single-Walled Carbon Nanotube/Epoxy Composites That Maximize Electromagnetic Interference Shielding Effectiveness. Polymers 2021, 13, 1867. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Silvia, C.; Viana, J.C.; Mendez, S.L. Extruded thermoplastic elastomers styrene-butadiene-styrene/carbon nanotubes composites for strain sensor applications. Compos. Part B Eng. 2014, 57, 242–249. [Google Scholar] [CrossRef]
- Drozdov, A.D. A model for the mechanical response of composites with thermoplastic-elastomer matrices. Compos. Sci. Technol. 2006, 66, 2648–2663. [Google Scholar] [CrossRef]
- Theodosiou, T.C.; Saravanos, D.A. Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos. Sci. Technol. 2010, 70, 1312–1320. [Google Scholar] [CrossRef]
- Purewal, M.S.; Hong, B.H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 186808. [Google Scholar] [CrossRef]
- Hu, P.Y.; Lyu, J.; Fu, C.; Gong, W.B.; Liao, J.H.; Lu, W.B.; Chen, Y.P.; Zhang, X.T. Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS Nano 2020, 14, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Sreekumar, T.V.; Liu, T.; Minus, M.; Kumar, S. Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 2005, 46, 3001–3005. [Google Scholar] [CrossRef]
- Cheng, Q.F.; Wang, B.; Zhang, C.; Liang, Z.Y. Functionalized Carbon-Nanotube Sheet/Bismaleimide Nanocomposites: Mechanical and Electrical Performance beyond Carbon-Fiber Composites. Small 2010, 6, 763–767. [Google Scholar] [CrossRef]
- Obradovic, V.; Stojanovic, D.B.; Jokic, B.; Zrilic, M.; Radojevic, V.; Uskokovic, P.S.; Aleksic, R. Nanomechanical and anti-stabbing properties of Kolon fabric composites reinforced with hybrid nanoparticles. Compos. Part B Eng. 2017, 108, 143–152. [Google Scholar] [CrossRef]
- Shiju, J.; Al-Sagheer, F.; Bumajdad, A.; Ahmad, Z. In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties. Nanomaterials 2018, 8, 309. [Google Scholar] [CrossRef]
- Bisht, A.; Dasgupta, K.; Lahiri, D. Effect of graphene and CNT reinforcement on mechanical and thermomechanical behavior of epoxyA comparative study. J. Appl. Polym. Sci. 2018, 135, 46101. [Google Scholar] [CrossRef]
- Jang, N.S.; Kim, K.H.; Ha, S.H.; Jung, S.H.; Lee, H.M.; Kim, J.M. Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications. ACS Appl. Mater. Interfaces 2017, 9, 19612–19621. [Google Scholar] [CrossRef] [PubMed]
Filler | Concentration (wt%) | Polymer | Voltage (V) | Temperature (°C) | Electrical Conductivity (S/cm) | Resistivity (Ω∙cm) | Reference |
---|---|---|---|---|---|---|---|
SWCNTs | 75 | ANFs | 6 | 280 | 7.90 × 102 | 1.27 × 10−3 | in this work |
100 | ANFs | 5 | 280 | 7.48 × 102 | 1.34 × 10−3 | ||
Single SWCNT | - | - | 1.2 | 400 | 1.00 × 105 | 1.00 × 10−5 | [11,45] |
MWCNTs | 10 | m-aramid | 12 | 270 | 1.00 × 10−1 | 1.00 × 101 | [28] |
CNTs | 40 | 1 PMIA | 15 | 270 | 8.00 × 101 | 1.25 × 10−2 | [29] |
Carboxylic CNTs | 30 | 1 PMIA | 25 | 242 | 1.50 × 101 | 6.67 × 10−2 | [30] |
CNTs | 100 | - | 2.5 | 200 | 1.20 × 103 | 8.33 × 10−4 | [31] |
MWCNTs/ Graphenes (9/1) | 1 | 2 PDMS | 50 | 225 | 1.37 × 10−2 | 7.30 × 101 | [32] |
MWCNTs | 10 | 3 PBI | 25 | 220 | 1.00 | 1.00 | [33] |
Graphenes | 10 | epoxy | 30 | 120 | 1.00 × 103 | 1.00 × 103 | [34] |
CNTs | 40 | ANFs | 10 | 110 | 2 | 0.5 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, M.Y.; Lee, G.W. The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite. Nanomaterials 2022, 12, 2780. https://doi.org/10.3390/nano12162780
Koo MY, Lee GW. The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite. Nanomaterials. 2022; 12(16):2780. https://doi.org/10.3390/nano12162780
Chicago/Turabian StyleKoo, Min Ye, and Gyo Woo Lee. 2022. "The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite" Nanomaterials 12, no. 16: 2780. https://doi.org/10.3390/nano12162780
APA StyleKoo, M. Y., & Lee, G. W. (2022). The Joule Heating Effect of a Foldable and Cuttable Sheet Made of SWCNT/ANF Composite. Nanomaterials, 12(16), 2780. https://doi.org/10.3390/nano12162780