Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization
Abstract
:1. Introduction
2. Graphene/Polyaniline Composites as Supercapacitor Electrodes
2.1. Increasing Cycling Stability of Polyaniline
2.2. Rising Specific Capacitance of Graphene-Related Material
3. Optimised In-Situ Chemical Oxidative Polymerization Processing Details
3.1. Aniline Monomer Content, Oxidants and Acids
3.2. Polymerization Time
4. Additives to Graphene/Polyaniline Composites
4.1. Metal Oxides and Hydroxides
4.2. Metal Selenides and Nitrides
4.3. Carbon Nanotubes
5. Symmetric Supercapacitors Based on PANI/RGO Electrodes
6. Summary and Outlook
- To analyse the time (speed) of the charge/discharge process, which is the one of the main differences between the supercapacitors and batteries as well as between the shape of CV and GCD;
- To test the cycling stability for longer periods of time (more than 10,000 cycles), which is important for practical applications;
- To develop/improve new methods for preparation of the porous materials on an industrial scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
ABA | 4-aminobenzonic acid |
ABF-G | 4-aminobenzoic acid- functionalized graphene |
AcAc | acetic acid |
AFG | amino-functionalized graphene |
AmS | ammonia solution |
ADF | anhydrous dimethylformamide |
ANI | aniline monomer |
aMWCNT | acid-treated multi-walled carbon nanotube |
APS | ammonium peroxydisulphate |
AT | amino-triazine |
BA | benzoic acid |
BD | 1,4-benzenediamine |
BET | Brunauer, Emmett, and Teller |
CA | citric acid |
CCG | chemically converted graphene |
CNT | carbon nanotube |
COP | chemical oxidative polymerization |
CSA | camphorsulfonic acid |
CTAB | hexadecyltrimethylammonium bromide |
CV | cyclic voltammetry |
DAP | 1,3- diaminopropane |
DMSO | dimethyl sulfoxide |
EB | emeraldine base |
EDA | ethylenediamine |
EDLC | electric double-layer capacitors |
EG | electrochemically exfoliated graphene |
EtGl | ethylene glycol |
Et4NBF4-AN | tetraacetylammonium-tetrafluoroborate-acetonitrile |
G | graphene |
GA | graphene aerogel |
GF | graphene foam |
GH | graphene hydrogel |
GmH | hydrogel of graphene modified by m-phenylenediamine |
GNS | graphene nanosheets |
GNS-NH2 | 4-aminophenyl modified graphene |
GNRs | graphene nanorods |
GO | graphene oxide |
GPH | graphene polyaniline hydrogel |
GQDs | graphene quantum dots |
HS | hollow sphere |
HT | hydrothermal method |
HQ | hydroquinone |
HydrM | hydrazine monohydrate N2H4 |
HydrH | hydrazine hydrate (N2H4∙H2O) |
IN | isoamyl nitrite |
LE | leucoemeraldine |
MA | 4-methylaniline |
MEG | microwave-exfoliated graphene sheets |
MnO2/GR | MnO2-modified graphene |
m-PDA | m-phenylenediamine |
MSG | multi-growth site graphene |
MW | microwave |
N-DNE | N-(3-(dimethylamino)propyl)-N’-ethylcarbodiimide hydrochloride |
NDTF | nitrophenyl diazonium tetrafluoroborate |
NFG | graphene grown on Ni foam |
N-HSM | N-Hydroxysuccinimide |
OGH | oriented graphene hydrogel |
OSAN | o-aminobenzenesuphonic acid |
PA | phytic acid |
PANI | polyaniline |
p-ABA | p-aminobenzonic acid |
PC-g | porous carbon-graphene |
PE | pernigraniline |
PG | pristine graphene |
PGH | polyaniline graphene hydrogel |
PPA | polyphosphoric acid |
p-PDA | p-phenylenediamine |
PVA | polyvinyl alcohol |
RGO or rGO | reduced graphene oxide |
RGOA | reduced graphene oxide aerogel |
SC | supercapacitor |
SDBS | sodium dodecylbenzene sulfonate |
SDS | sodium dodecyl sulfate |
SEM | scanning electron microscopy |
SSA | specific surface area |
ST | 2,4,6-tri(40-aminobenzenesulfonic acid)-1,3,5-triazine |
TA | D-tartaric acid |
TBA | tetrabutylammonium |
TBAH | tetrabutylammonium hydroxide |
TCTA | 2,4,6-trichloro- triazine |
TD | 1,2,4-triaminobenzene dihydrochloride |
TFA | trifluoroacetic acid |
TMEG | tetrabutylammonium hydroxide stabilized microwave-exfoliated graphene |
TPA | triphenylamine |
TSA | p—toluenesulfonic acid |
UCNTs | unzipped carbon nanotubes |
UGA | unidirectional graphene aerogel |
References
- Sun, J.; Luo, B.; Li, H. A Review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: Past, present, and future. Adv. Energy Sustain. Res. 2022, 3, 2100191. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 201902007. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials—Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; He, D.; You, B. Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes. Mater. Today Sustain. 2021, 17, 100096. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Züttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 2004, 78, 941–946. [Google Scholar] [CrossRef]
- Karthick, R.; Brindha, M.; Selvaraj, M.; Ramu, S. Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film. J. Colloid Interface Sci. 2013, 406, 69–74. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef] [Green Version]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Lemine, A.S.; Zagho, M.M.; Altahtamouni, T.; Bensalah, N. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 2018, 42, 4284–4300. [Google Scholar] [CrossRef]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Yuan, J.; Zhang, K.; Yu, X.; Sun, Y.; Zhang, H.; Qin, L.-C. Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chem. Phys. Lett. 2017, 693, 60–65. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Zhang, B.; Liang, R.; Zheng, Q.-B.; Oh, S.W.; Lin, X.-Y.; Yousefi, N.; Kim, J.-K. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 2012, 50, 4239–4251. [Google Scholar] [CrossRef]
- Alazmi, A.; El Tall, O.; Rasul, S.; Hedhili, M.N.; Patole, S.P.; Costa, P.M.F.J. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale 2016, 8, 17782–17787. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon Nanotube Based Fiber Supercapacitor as Wearable Energy Storage. Front. Mater. 2019, 6, 138. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2019, 8, 1198–1224. [Google Scholar] [CrossRef]
- Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445. [Google Scholar] [CrossRef]
- Nguyen, T.; Montemor, M.D.F. Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices. Adv. Sci. 2019, 6, 1801797. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.M.; da Silva, M.I.; Toma, H.E.; Angnes, L.; Martins, P.R.; Araki, K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: A review. J. Mater. Chem. A 2020, 8, 10534–10570. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M. Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batter. Supercaps 2021, 4, 571–584. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Liu, X.; Zhu, Y.; Wu, Y.; van Ree, T. Metal oxides in supercapacitors. In Metal Oxides. Metal Oxides in Energy Technologies; Wu, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–203. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Ye, F.; Wang, W.; Wang, G.; Zhang, Z.; Li, S.; Zhou, Y.; Cai, J. Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J. Power Sources 2019, 443, 227246. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Shen, Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 2016, 1, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Raji, A.-R.O.; Fei, H.; Yang, Y.; Samuel, E.L.G.; Tour, J.M. Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Appl. Mater. Interfaces 2013, 5, 6622–6627. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, X.; Zhu, Z.; Xiong, D.; Zhang, H.; Yang, W. Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chem. Eng. J. 2021, 423, 130203. [Google Scholar] [CrossRef]
- Feng, L.; Yan, B.; Zheng, J.; Chen, J.; Wei, R.; Jiang, S.; Yang, W.; Zhang, Q.; He, S. Soybean protein-derived N,O co-doped porous carbon sheets for supercapacitor applications. New J. Chem. 2022, 46, 10844–10853. [Google Scholar] [CrossRef]
- Moyseowicz, A.; Gryglewicz, G. Hydrothermal-assisted synthesis of a porous polyaniline/reduced graphene oxide composite as a high-performance electrode material for supercapacitors. Compos. Part B Eng. 2018, 159, 4–12. [Google Scholar] [CrossRef]
- Zhu, J.; Kong, L.; Shen, X.; Chen, Q.; Ji, Z.; Wang, J.; Xu, K.; Zhu, G. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors. Appl. Surf. Sci. 2018, 428, 348–355. [Google Scholar] [CrossRef]
- Hassan, M.; Reddy, K.R.; Haque, E.; Faisal, S.N.; Ghasemi, S.; Minett, A.I.; Gomes, V.G. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos. Sci. Technol. 2014, 98, 1–8. [Google Scholar] [CrossRef]
- Du, X.; Shi, X.; Li, Y.; Cao, K. Construction of N,S-co-doped graphene/polyaniline composite as free-standing electrode material. Int. J. Energy Res. 2020, 45, 6227–6238. [Google Scholar] [CrossRef]
- Wang, S.; Ma, L.; Gan, M.; Fu, S.; Dai, W.; Zhou, T.; Wang, H. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 2015, 299, 347–355. [Google Scholar] [CrossRef]
- Bulin, C.; Yu, H.; Ge, X.; Xin, G.; Xing, R.; Li, R.; Zhang, B. Preparation and supercapacitor performance of functionalized graphene aerogel loaded with polyaniline as a freestanding electrode. J. Mater. Sci. 2017, 52, 5871–5881. [Google Scholar] [CrossRef]
- Hong, X.; Zhang, B.; Murphy, E.; Zou, J.; Kim, F. Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J. Power Sources 2017, 343, 60–66. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Qiu, L.; Li, D. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: The importance of nano-architecturing. Energy Environ. Sci. 2012, 6, 477–481. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles. J. Chem. Educ. 2016, 93, 1606–1611. [Google Scholar] [CrossRef]
- Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.; Lim, H. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yu, H.; Xing, R.; Ge, X.; Sun, H.; Li, R.; Zhang, Q. Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochim. Acta 2018, 260, 504–513. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, R.; Wang, Z.; Liu, H. Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J. Mater. Chem. 2012, 22, 13619–13624. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhong, W.; Yang, W. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 2018, 6, 9245–9256. [Google Scholar] [CrossRef]
- Kim, M.; Lee, C.; Jang, J. Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity. Adv. Funct. Mater. 2013, 24, 2489–2499. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, X.; Wang, C. Facile Route for the Preparation of Functionalized Reduced Graphene Oxide/Polyaniline Composite and Its Enhanced Electrochemical Performance. ECS J. Solid State Sci. Technol. 2021, 10, 031003. [Google Scholar] [CrossRef]
- Ji, J.; Li, R.; Li, H.; Shu, Y.; Li, Y.; Qiu, S.; He, C.; Yang, Y. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Compos. Part B Eng. 2018, 155, 132–137. [Google Scholar] [CrossRef]
- Wang, J.; Xian, H.; Peng, T.; Sun, H.; Zheng, F. Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supercapacitors. RSC Adv. 2015, 5, 13607–13612. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, F.; Chang, J.; Wu, D.; Wang, X.; Wang, X.; Xu, F.; Gao, S.; Jiang, K. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim. Acta 2014, 133, 325–334. [Google Scholar] [CrossRef]
- Luo, J.; Zhong, W.; Zou, Y.; Xiong, C.; Yang, W. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J. Power Sources 2016, 319, 73–81. [Google Scholar] [CrossRef]
- Wu, X.; Tang, L.; Zheng, S.; Huang, Y.; Yang, J.; Liu, Z.; Yang, W.; Yang, M. Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power Sources 2018, 397, 189–195. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Wu, D.; Li, K.; Qin, Y.; Tao, Y.; Kong, Y. Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chem. Commun. 2019, 55, 1738–1741. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, F.; Chen, N.; Tan, L.; Liu, C.; Hu, D.; Zhao, D. Enhanced capacitive performance of polyaniline on hydroquinone-functionalized three-dimensional porous graphene substrate for supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 5655–5667. [Google Scholar] [CrossRef]
- Wang, L.; Ye, Y.; Lu, X.; Wen, Z.; Li, Z.; Hou, H.; Song, Y. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors. Sci. Rep. 2013, 3, 3568. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Guang, S.; Xu, H.; Su, X. Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes. J. Mater. Chem. A 2013, 2, 813–823. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Guang, S.; Ke, F.; Xu, H. Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 2015, 83, 79–89. [Google Scholar] [CrossRef]
- Ke, F.; Liu, Y.; Xu, H.; Ma, Y.; Guang, S.; Zhang, F.; Lin, N.; Ye, M.; Lin, Y.; Liu, X. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Compos. Sci. Technol. 2017, 142, 286–293. [Google Scholar] [CrossRef]
- Liu, J.; Du, P.; Wang, Q.; Liu, D.; Liu, P. Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochim. Acta 2019, 305, 175–186. [Google Scholar] [CrossRef]
- Li, J.; Ren, J.; Xu, Y.; Ji, H.; Zou, X. Facile synthesis and characterization of three-dimensional graphene/polyaniline composites with enhanced electrochemical properties. J. Mater. Sci. Mater. Electron. 2019, 30, 6650–6659. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Y.; Kong, P.; Tan, L.; Feng, H.; Luo, Y. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 2017, 392, 71–79. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Zhao, X.; Wu, L.; Zhang, Q. In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes. Synth. Met. 2013, 185–186, 89–95. [Google Scholar] [CrossRef]
- Hou, Z.; Zou, S.; Li, J. Morphology and structure control of amine- functionalized graphene/polyaniline composite for high-performance supercapacitors. J. Alloy. Compd. 2020, 827, 154390. [Google Scholar] [CrossRef]
- Chen, N.; Liu, C.; Tan, L.; Ren, Y.; Zhao, D.; Luo, Y.; Feng, H. Facile Synthesis of 4-Methylaniline Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors. J. Electron. Mater. 2019, 48, 4463–4472. [Google Scholar] [CrossRef]
- Ge, M.; Hao, H.; Lv, Q.; Wu, J.; Li, W. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim. Acta 2019, 330, 135236. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Liu, P.; Yang, B.; Diao, S.; Gao, Y. Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor. J. Electroanal. Chem. 2020, 860, 113908. [Google Scholar] [CrossRef]
- Kung, C.-Y.; Wang, T.-L.; Lin, H.-Y.; Yang, C.-H. A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors. J. Power Sources 2021, 490, 229538. [Google Scholar] [CrossRef]
- Zhu, P. One-step Synthesis of Spherical Polyaniline/Graphene Composites by Microemulsion for Supercapacitors. Int. J. Electrochem. Sci. 2016, 9019–9029. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, P.; Xiong, Y.; Chen, H.; Kang, S.; Luo, H.; Guan, S. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 2016, 222, 12–19. [Google Scholar] [CrossRef]
- Mondal, S.; Rana, U.; Malik, S. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem. Commun. 2015, 51, 12365–12368. [Google Scholar] [CrossRef]
- Van Hoa, N.; Quyen, T.T.H.; Van Hieu, N.; Ngoc, T.Q.; Thinh, P.V.; Dat, P.A.; Nguyen, H.T.T. Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors. Synth. Met. 2017, 223, 192–198. [Google Scholar] [CrossRef]
- Breczko, J.; Grzeskiewicz, B.; Gradzka, E.; Bobrowska, D.M.; Basa, A.; Goclon, J.; Winkler, K. Synthesis of polyaniline nanotubes decorated with graphene quantum dots: Structural & electrochemical studies. Electrochim. Acta 2021, 388, 138614. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, T.; Yue, J.; Sheng, L.; Fan, Z. Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors. Electrochim. Acta 2018, 291, 234–241. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, K.; Chan, H.S.O.; Wu, J. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 2011, 22, 80–85. [Google Scholar] [CrossRef]
- Kuzhandaivel, H.; Manickam, S.; Balasingam, S.K.; Franklin, M.C.; Kim, H.-J.; Nallathambi, K.S. Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors. New J. Chem. 2021, 45, 4101–4110. [Google Scholar] [CrossRef]
- Sekar, P.; Anothumakkool, B.; Kurungot, S. 3D Polyaniline Porous Layer Anchored Pillared Graphene Sheets: Enhanced Interface Joined with High Conductivity for Better Charge Storage Applications. ACS Appl. Mater. Interfaces 2015, 7, 7661–7669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Si, L.; Zhou, B.; Zhao, B.; Zhu, Y.; Zhu, L.; Jiang, X. Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chem. Eng. J. 2016, 288, 689–700. [Google Scholar] [CrossRef]
- Tang, W.; Peng, L.; Yuan, C.; Wang, J.; Mo, S.; Zhao, C.; Yu, Y.; Min, Y.; Epstein, A.J. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth. Met. 2015, 202, 140–146. [Google Scholar] [CrossRef]
- Salunkhe, R.; Hsu, S.-H.; Wu, K.C.-W.; Yamauchi, Y. Large-Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem 2014, 7, 1551–1556. [Google Scholar] [CrossRef]
- Wang, R.; Han, M.; Zhao, Q.; Ren, Z.; Guo, X.; Xu, C.; Hu, N.; Lu, L. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci. Rep. 2017, 7, srep44562. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors. Adv. Mater. 2013, 25, 6985–6990. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Wang, Y.; Ma, L.; Gao, X. Utilizing polyaniline to decorate graphene and its effect on the electrochemical properties of polyaniline/graphene electrode composite. Mater. Res. Express 2019, 6, 105614. [Google Scholar] [CrossRef]
- Li, J.; Xiao, D.; Ren, Y.; Liu, H.; Chen, Z.; Xiao, J. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials. Electrochim. Acta 2019, 300, 193–201. [Google Scholar] [CrossRef]
- Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 2015, 81, 552–563. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhong, Q.; Qin, Y.; Xu, A.; Li, W.; Shi, J. In Situ Synthesis of Trifluoroacetic Acid-Doped Polyaniline/Reduced Graphene Oxide Composites for High-Performance All-Solid-State Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8774–8785. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Yue, H.; Yao, F.; Zhang, X.; Guo, E.; Ma, Y.; Wang, Z.; Wang, Y. A Novel Polyaniline Nanowire Arrays/Three-Dimensional Graphene Composite for Supercapacitor. ChemistrySelect 2020, 5, 11004–11009. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392–1401. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 2017, 5, 5466–5474. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164–2170. [Google Scholar] [CrossRef]
- Bláha, M.; Varga, M.; Prokeš, J.; Zhigunov, A.; Vohlídal, J. Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur. Polym. J. 2013, 49, 3904–3911. [Google Scholar] [CrossRef]
- Ates, M.; El-Kady, M.; Kaner, R.B. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Nanotechnology 2018, 29, 175402. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, A.; Deb, S.K.; Gogoi, A.; Majumdar, A.; Dutta, P.; Reddy, K.A.; Maiti, U.N. Polyaniline–Graphene Hydrogel Hybrids via Diffusion Controlled Surface Polymerization for High Performance Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 12278–12287. [Google Scholar] [CrossRef]
- Song, P.; He, X.; Xie, M.; Tao, J.; Shen, X.; Ji, Z.; Yan, Z.; Zhai, L.; Yuan, A. Polyaniline wrapped graphene functionalized textile with ultrahigh areal capacitance and energy density for high-performance all-solid-state supercapacitors for wearable electronics. Compos. Sci. Technol. 2020, 198, 108305. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, R.; Zhong, W.; Yang, W. Mechanically robust double-crosslinked network functionalized graphene/polyaniline stiff hydrogels for superior performance supercapacitors. J. Mater. Chem. A 2018, 6, 8568–8578. [Google Scholar] [CrossRef]
- Liu, Z.; Li, D.; Li, Z.; Liu, Z.; Zhang, Z. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes. Appl. Surf. Sci. 2017, 422, 339–347. [Google Scholar] [CrossRef]
- Usman, M.; Pan, L.; Asif, M.; Mahmood, Z. Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. J. Mater. Res. 2015, 30, 3192–3200. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, B.; Luo, J.; Gu, Y.; Liu, X. Synthesis of Polyaniline@MnO2/Graphene Ternary Hybrid Hollow Spheres via Pickering Emulsion Polymerization for Electrochemical Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 7721–7730. [Google Scholar] [CrossRef]
- Song, N.; Wu, Y.; Wang, W.; Xiao, D.; Tan, H.; Zhao, Y. Layer-by-layer in situ growth flexible polyaniline/graphene paper wrapped by MnO2 nanoflowers for all-solid-state supercapacitor. Mater. Res. Bull. 2018, 111, 267–276. [Google Scholar] [CrossRef]
- Charandabinezhad, S.R.; Asgharzadeh, H.; Arsalani, N. Synthesis and characterization of reduced graphene oxide/magnetite/polyaniline composites as electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 1864–1876. [Google Scholar] [CrossRef]
- Li, S.; Wu, D.; Cheng, C.; Wang, J.; Zhang, F.; Su, Y.; Feng, X. Polyaniline-Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angew. Chem. Int. Ed. 2013, 52, 12105–12109. [Google Scholar] [CrossRef]
- Haldar, P. Use of redox additive to enhance the electrochemical performance of Co3O4/polyaniline/graphene composite-based supercapacitors. J. Mater. Sci. Mater. Electron. 2020, 31, 7905–7915. [Google Scholar] [CrossRef]
- Wang, H. Design and Synthesis of Ternary Graphene/Polyaniline/Co3O4 Hierarchical Nanocomposites for Supercapacitors. Int. J. Electrochem. Sci. 2017, 3721–3731. [Google Scholar] [CrossRef]
- Ma, L.; Su, L.; Zhang, J.; Zhao, D.; Qin, C.; Jin, Z.; Zhao, K. A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J. Electroanal. Chem. 2016, 777, 75–84. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Yang, L.; Fan, G.; Lin, Y.; Li, F. Direct in situ assembly of bimetallic Co–Ni hydroxide/polyaniline-modified reduced graphene oxide nanocomposite for asymmetric flexible supercapacitor electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 6467–6478. [Google Scholar] [CrossRef]
- Li, H.; Zang, P.; Liu, H.; Li, J.; Zhang, B.; Yu, C.; Jiao, Y.; Li, H. Fabrication and electrochemical behavior of halloysite/ graphene-polyaniline three-dimensional hybrid aerogel loaded with iron oxide. J. Alloys Compd. 2021, 871, 159157. [Google Scholar] [CrossRef]
- Haldar, P. Achieving wide potential window and high capacitance for supercapacitors using different metal oxides (viz.: ZrO2, WO3 and V2O5) and their PANI/graphene composites with Na2SO4 electrolyte. Electrochim. Acta 2021, 381, 138221. [Google Scholar] [CrossRef]
- Giri, S.; Ghosh, D.; Das, C.K. Growth of Vertically Aligned Tunable Polyaniline on Graphene/ZrO2Nanocomposites for Supercapacitor Energy-Storage Application. Adv. Funct. Mater. 2013, 24, 1312–1324. [Google Scholar] [CrossRef]
- Huang, C.; Hao, C.; Zheng, W.; Zhou, S.; Yang, L.; Wang, X.; Jiang, C.; Zhu, L. Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Appl. Surf. Sci. 2019, 505, 144589. [Google Scholar] [CrossRef]
- Le, Q.B.; Vargun, E.; Fei, H.; Cheng, Q.; Bubulinca, C.; Moučka, R.; Sapurina, I.; Tran, T.D.; Kazantseva, N.E.; Saha, P. Effect of PANI and PPy on Electrochemical Performance of rGO/ZnMn2O4 Aerogels as Electrodes for Supercapacitors. J. Electron. Mater. 2020, 49, 4697–4706. [Google Scholar] [CrossRef]
- Sankar, K.V.; Selvan, R.K. The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv. 2014, 4, 17555–17566. [Google Scholar] [CrossRef]
- Sankar, K.V.; Selvan, R.K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J. Power Sources 2015, 275, 399–407. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Yin, H.; Hou, S.; Lin, H.; Zhou, J.; Zhuo, S. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 2020, 10, 3122–3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Yang, L.; Zhang, H.; Liu, J.; Hu, R.; Zhu, M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J. Power Sources 2020, 450, 227680. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Xin, S.; Yang, Z.; Li, Y.; Zhang, D.; Yao, P. Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 21373–21380. [Google Scholar] [CrossRef]
- Mangisetti, S.R.; Kamaraj, M.; Ramaprabhu, S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors. Electrochim. Acta 2019, 305, 264–277. [Google Scholar] [CrossRef]
- Maity, C.K.; Hatui, G.; Sahoo, S.; Saren, P.; Nayak, G.C. Boron Nitride based Ternary Nanocomposites with Different Carbonaceous Materials Decorated by Polyaniline for Supercapacitor Application. ChemistrySelect 2019, 4, 3672–3680. [Google Scholar] [CrossRef]
- Sun, M.; Wang, G.; Yang, C.; Jiang, H.; Li, C. A graphene/carbon nanotube@π-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 3880–3890. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Gao, N.; Yin, Z.; Zhou, H.; Yang, X.; Kuang, Y. Synthesis of 3D reduced graphene oxide/unzipped carbon nanotubes/polyaniline composite for high-performance supercapacitors. Electrochim. Acta 2018, 269, 649–656. [Google Scholar] [CrossRef]
- Zhang, C.; Tjiu, W.W.; Liu, T. All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors. Polym. Chem. 2013, 4, 5785–5792. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]
Materials for PANI-Based Composite | Used Graphene-Related Material (Starting Materials) | Amount of G in Composite, wt% | Cycling Stability of Pristine PANI//G/PANI Composite, % (at Number of Cycles/at Current Density or Scan Rate) | Specific Capacitance of PANI//G//G/PANI Composite, F/g (at Current Density or Scan Rate) | Ref. |
---|---|---|---|---|---|
HCl, ANI, APS | RGO (GO, HBr) | 2 | 87//91 (200/1 A/g) | 253//-//446 | [44] |
HCl, ANI, APS (ANI:APS as 1:1.2) CSA, m-cresol/ chloroform solution, AmS | RGO (GO, HydrM) | - | 60//76 (500/0.45 A/g) | 256//-//431 (5 mV/s) | [46] |
HCl, ANI, APS (APS:ANI as 1:1) | RGO (NaBH4, NH4OH, CTAB) | - | 51//85 (800/1 A/g) | 298//113//421 (0.6 A/g) | [47] |
HCl, ANI, APS | MSG (GO, ascorbic acid) | 31.9 | 24 (1000)//89.5 (10,000/10 A/g) | 280//253//912 (1 A/g) | [43] |
PA, ANI, APS (ANI:PA:APS as 10:2:2.5) | RGO (GO, HydrH) | 9 | 38//82 (1000/5 A/g) | 531//209//856 (1 A/g) | [48] |
HCl, ANI, APS (APS:ANI as 1:1) | RGO (GO, 160 °C) (ANI:GO as 1:20) | - | 44//88 (1000/1 A/g) | 311//303//648 (0.5 A/g) | [49] |
HCl, ANI, APS | p-PDA-G (GO, NaBH4, p-PDA, NaNO2) | 0.5 | 47//76 (1000/1 A/g) | 380//138//440 | [50] |
PA, ANI, APS, p-PDA ((ANI and p-PDA):APS as 1:1) ((ANI and p-PDA):PA as 5:1) | RGO (GO, 180 °C) (GO:p-PDA:ANI as 1:1:25) | 3.6 | 53//94.4 (1000/20 A/g) | 448//-//538 (1 A/g) | [51] |
HCl, ANI, APS | GA (GO, 1100 °C) | 69 | 57//74 (1000/3 A/g) | 312//243//538 (1 A/g) | [52] |
HCl, ANI, APS | RGOA (GO, p-ABA, HCl, NaNO2, EtGl, AmS) | - | 60.6//72.3 (1000 /10 A/g) | 342//156//553 (1 A/g) | [53] |
HCl, ANI, APS (ANI:APS as 2:1) | HQ-G (GO, HQ, 180 °C) | - | 62//82 (1000/10 mA/cm2) | 351//264 (1.14 A/g)//435 (22.73 A/g) | [54] |
H2SO4, ANI, APS (ANI:APS as 4:1) | TBA-RGO (GO, HydrM, degassed acetonitrile, NDTF, TBAH, AcAc, Zn, NH4Cl) | - | 69//81 (1000/2 A/g) | 215//-//590 (0.1 A/g) | [55] |
H2SO4, ANI, APS, SDS | GmH (GO, m-PDA), 180 °C) (PANI:GO as 7:1) | - | 78.9//87.1 (1000/10 A/g) | 325//-//514 (1 A/g) | [45] |
H2SO4, ANI, APS | ST-GNS (GO, ST) | 10 | 47//85.7 (1500/100 mV/s) | 487//123//1225 (1 A/g) | [56] |
HCl, ANI, APS | AFG (GO, HydrH, p-PDA, isoamyl nitrite) | 5 | 47//88 (1500/100 mV/s) | 487//238//1295 (1 A/g) | [57] |
H2SO4, ANI, APS | AT-RGO (GO, HydrH, TCTA, p-PDA) | 5 | 47//89 (1500/100 mV/s) | 487//347//1510 (1 A/g) | [58] |
HCl, ANI, APS | N-doped RGO (GO, NH4OH, H2O2, HydrH) | 10 | 43//97 (2000/100 mV/s) | 347//96//746 (1 A/g) | [59] |
H2SO4, ANI, APS | GH (GO, 180 °C) | 9 | 52//89 (2000/10 A/g) | 401//291//618 (1 A/g) | [60] |
HCl, ANI, APS (ANI:APS as 1:1) | RGO (GO, NaOH) (ANI:GO as 10:1) | 9 | 55//81.1 (2000/100 mV/s) | 397//-//524 (0.5 A/g) | [61] |
H2SO4, ANI, APS | TMEG (MEG, TBAH) | 10 | 56 (2000)//90 (2000/100 mV/s) | 626//115//1225 (1 A/g) | [62] |
HCl, ANI, APS (ANI:APS as 10:1) | TD-RGO (GO, TD, 180 °C) | 20 | 65//89 (2000/1 A/g) | 400//-//489 | [63] |
HCl, ANI, APS (ANI:APS as 1:1) | MA-RGO (GO, MA, 95 °C) | - | 29//87.6 (3000/100 mV/s) | 368//-//530 (0.5 A/g) | [64] |
HClO4, ANI, APS (ANI:APS as 3:2) | N-doped G (GO, EDA, 180 °C) | 35 | 43.3//87.4 (5000/5 A/g) | 310//317//620 (0.5 A/g) | [65] |
HCl, ANI, APS, p-PDA, TPA | GNS-NH2 (GO, HydrH, NaNO2, BD, H2SO4) | 30 | 35//56.5 (4000/500 mV/s) | 859//-//967 (0.5 A/g) | [66] |
OSAN, ANI, APS | ABF-G (graphite powder, ABA, PPA, P2O5) | 3 | - | 378//-//642 (1 A/g) | [67] |
HCl, ANI, APS | RGO (GO, HydrH, 100 °C) | 6 | -//78.8 (1000/2 A/g) | 318//-//496 | [68] |
H2SO4, ANI, APS (ANI:APS as 4:1) | G (GO, HydrH, 95 °C) | - | -//84 (1500/2 A/g) | 333//-//596 (0.5 A/g) | [69] |
Water, ANI, APS | GQDs (GO, H2O2, 90 °C) | 10 | -//80.1 (3000/1 A/g) | 206//-//1044 (1 A/g) | [70] |
HCl, ANI, APS, K2S2O8 | N-grafted G (GO, ADF, N-HSM, N-DNE, DAP, 180 °C) | - | -//91.3 (3000/4 A/g) | 600//-//1600 (12 A/g) | [71] |
H2O, ANI, TSA, APS | GQDs (citric acid) | - | -//100 (7000/7 A/g) | 93//-//245 | [72] |
HCl, ANI, APS | RGO (GO, HydrH) | 2 | -//- | 323//-//552 (0.5 A/g) | [73] |
HCl, ANI, APS | TBAOH-G (GO, TBAH, SDBS) | 35 | -//- | 264//-//526 (0.2 A/g) | [74] |
HCl, ANI, H2SO4, APS | S-N-doped GQDs (GO, citric acid, thiourea) | - | -//- | 177//-//645 (0.5 A/g) | [75] |
PA, HCl, ANI, APS | ABA-RGO (GO, NaBH4, NaNO2, ABA) | - | -//- | 512//-//652 | [76] |
Used Graphene-Material | Materials for PANI-Based Composite | PANI Amount in G/PANI Composite, wt% | Specific Capacitance of G//PANI//G/PANI, F/g (at Current Density or Scan Rate) | Cycling Stability of Composite, % (Cycle Number/at Current Density or Scan Rate) | Ref. |
---|---|---|---|---|---|
GO-PG (graphite powder, DMSO, Na3C6H5O7×2H2O) | HCl, ANI, APS | 20 | 50//-//794 (1 A/g) | 83.4 (1000/100 mV/s) | [77] |
3D RGO (GO, NaCO3, CaCl2, CaCO3, glucose, NH4OH, 180 °C) | HClO4, ANI, APS | - | 88.9//-//243 (1 A/g) | 87 (1000/1 A/g) | [79] |
RGO (GO, HydrH) | HClO4, ANI, APS | - | 90//78//286 (5 mV/s) | 94 (2000/50 mV/s) | [78] |
N-doped RGO (GO, AmS, H2O2) | HCl, ANI, APS | 90 | 96//347//746 (1 A/g) | 97 (2000/100 mV/s) | [59] |
GNS (GO, 180 °C) | HCl, ANI, APS | - | 102//353//286 (2 mV/s) | 94 (2000/50 mV/s) | [80] |
3D-RGO (GO, CaCl2, AmS) | HClO4, ANI, APS | - | 110//-//385 (0.5 A/g) | 90 (5000/5 A/g) | [81] |
RGO (NaBH4, NH4OH, CTAB) | HCl, ANI, APS (APS:ANI as 1:1) | - | 113//298//421 (0.6 A/g) | 85 (800/1 A/g) | [47] |
TMEG (MEG, TBAH) | H2SO4, ANI, APS | 90 | 115//626//1225 (1 A/g) | 90 (2000/100 mV/s) | [62] |
RGO (NaBH4, 95 °C) | HCl, ANI, APS | - | 120//105//147 (0.5 A/g) | - | [82] |
ST-GNS (GO, ST) | H2SO4, ANI, APS | 90 | 123//487//1225 (1 A/g) | 85.7 (1500/100 mV/s) | [56] |
G (GO, HydrH) | HClO4, ANI, APS, chloroform | - | 125//245//578 (1 A/g) | - | [83] |
N,S-doped GH (GO, urea, triourea, 180 °C) | HCl, ANI, APS | - | 130//-//237 (0.5 A/g) | 95 (1000/10 A/g) | [36] |
p-PDA-G (GO, NaBH4, P-PDA, NaNO2) | HCl, ANI, APS | 99.5 | 138//380//440 (1 A/g) | 76 (1000/1 A/g) | [50] |
B-doped G (GO, H3BO3, 180 °C) (ANI:B-doped G as 1:1) | HCl, ANI, APS (ANI:APS as 1:1) | 50 | 158//284//406 (1 mV/s) | 90 (5000/2 A/g) | [84] |
RGOA (GO, ABA, HCl, NaNO2, EtGl, AmS) | HCl, ANI, APS | - | 156//342//553 (1 A/g) | 72.3 (1000/10 A/g) | [53] |
RGO (GO, HydrH) | H2O, TFA, ANI, APS (TFA:ANI:APS as 1:2:2) | 80 | 156//325//810 (1 A/g) | - | [85] |
GNS (GO, HydrH) | HCl, ANI, APS | 85 | 183//115//1046 (1 mV/s) | - | [86] |
RGO (GO, 180 °C) (GO: p-PDA:ANI as 1:1:25) | PA, ANI, APS, p-PDA (ANI + p-PDA):APS as 1:1 (ANI + p-PDA):PA as 5:1 | - | 190//-//610 (1 A/g) | 94.4 (1000/20 A/g) | [51] |
3D RGO (GO, HydrM, AmS) | HClO4, ANI, APS (ANI:APS as 1.5:1) | - | 190//-//740 (0.5 A/g) | 87 (1000/10 A/g) | [37] |
3D G (HNO3, H2SO4, Ni NPs as template, 900 °C, Ar, H2, CH4) | H2SO4, ANI, APS (ANI:APS as 4:1) | - | 201//-//680 (1 A/g) | 76 (1000/10 A/g) | [87] |
G (GO, HydrM, 95 °C) | HCl, ANI, APS | 20 | 206//420//480 (1 A/g) | - | [88] |
RGO (GO, sodium ascorbate, 95 °C) | HCl, ANI, APS, methylbenzene (ANI:APS as 4:1) | 30 | 208//-//777 (1 A/g) | 85 (6000/5 A/g) | [89] |
RGO (GO, HydrH) | PA, ANI, APS (ANI:PA:APS as 10:2:2.5) | 91 | 209//531//856 (1 A/g) | 82 (1000/5 A/g) | [48] |
p-PDA-AFG (GO, HydrH, p-PDA, isoamyl nitrite) | HCl, ANI, APS | 95 | 238//487//1295 (1 A/g) | 88 (1500/100 mV/) | [57] |
GA (GO, 1100 °C) | HCl, ANI, APS | 31 | 243//312//538 (1 A/g) | 74 (1000/3 A/g) | [52] |
MSG (GO, ascorbic acid) | HCl, ANI, APS | 68.1 | 253//280//912 (1 A/g) | 89.5 (10,000/10 A/g) | [43] |
HQ-G (GO, HQ, 180 °C) | HCl, ANI, APS (ANI:APS as 2:1) | - | 264 (1.14 A/g)//351//435 (22.73 A/g) | 82 (1000/10 mA/cm2) | [54] |
GH (GO, 180 °C) | H2SO4, ANI, APS | 91 | 291//401//618 (1 A/g) | 89 (2000/10 A/g) | [60] |
RGO (GO, 160 °C) (ANI:GO as 1:20) | HCl, ANI, APS (APS:ANI as 1:1) | - | 303//311//648 (0.5 A/g) | 88 (1000/1 A/g) | [49] |
RGO (GO, EtGl, NaOH, 90 °C) | HCl, ANI, APS (ANI:APS as 1:1) | 7.7 | 316//777//1126 (1 mV/s) | 84 (1000/0.2 A/g) | [90] |
N-doped G (GO, EDA, 180 °C) | HClO4, ANI, APS (ANI:APS as 3:2) | 65 | 317//310//620 (0.5 A/g) | 87.4 (5000/5 A/g) | [65] |
GA (GO, 140 °C, p-PDA) | HCl, ANI, APS | 79.1 | 338//-//810 (1 A/g) | 83.2 (10,000/-) | [38] |
AT-RGO (GO, HydrH, TCTA, p-PDA) | H2SO4, ANI, APS | 95 | 347//487//1510 (1 A/g) | 89 (1500/100 mV/) | [58] |
Composite Electrodes | Electrolyte (Potential Window, V) | Specific Capacitance of Symmetric SC, F/g (at Current Density) | Specific Energy (Wh/kg) | Specific Power (W/kg) | Cycling Stability of Symmetric SC, % (at Number of Cycles/at Current Density or Scan Rate) | Ref. |
---|---|---|---|---|---|---|
MSG/PANI | H2SO4-PVA (0–+0.8) | 120 (1 A/g) | 30 | 850 | 90 (5000/10 A/g) | [43] |
RGO/PANI | H2SO4-PVA (−0.2–+0.8) | 700 (1 A/g) | 62.2 | 800 | 91.3 (2000/5 A/g) | [85] |
GO-PG/PANI | H2SO4 (0–+0.7) | 564 (2 A/g) | 50.2 | 2143.8 | 80 (1000/100 mV/s) | [77] |
3D-RGO/PANI | H2SO4 (0–+0.7) | 385 (0.5 A/g) | - | - | 88 (5000/5 A/g) | [81] |
GH/PANI | H2SO4 (0–+0.8) | 503 (5 A/g) | 29.85 | 1160 | 95.8 (3000/5 A/g) | [93] |
ABA-RGO/PANI | H2SO4 (0–+0.8) | 512 (1 A/g) | - | - | >100 (4000/5 A/g) | [76] |
B-doped G/PANI | H2SO4 (−0.2–+0.6) | 241 (0.5 A/g) | 19.9 | 523.5 | ~100 (5000/5 A/g) | [84] |
N-doped RGO/PANI | H2SO4 (−0.2–+0.8) | 510 (1 A/g) | 24.7 | 329.5 | 74 (2000/3 A/g) | [59] |
3D G/PANI | H2SO4 (−0.2–+0.8) | 72 (1 A/g) | 6.43 | 400 | 78 (1000/10 A/g) | [87] |
RGO/PANI | H2SO4 (−0.2–+0.8) | 665 (1 A/g) | 10.9 | - | 100 (10,000/5 A/g) | [89] |
GA/PANI | H2SO4 (−0.2–+0.8) | 211 (-) | ~30 | <50 | ~100 (10,000/10 A/g) | [38] |
GH/PANI | H2SO4 (−0.2–+0.8) | 311 (0.4 A/g) | 66.3 | 539.9 | 99 (1000/100 mV/s) | [92] |
GNS-NH2/PANI | H2SO4 (−0.2–+0.8) | 110 (0.1 A/g) | 15.3 | 50 | 94.9 (5000/500 mV/s) | [66] |
RGO/PANI/ | H2SO4 (−0.2–+0.8) | - | 30 | 216 | 91.21 (1000/20 mV/s) | [73] |
S-N-doped GQDs/PANI | H2SO4 (0–+1) | 124 (1 A/g) | 17.25 | 500 | 90 (1000/2.5 A/g) | [75] |
RGO/PANI | H2SO4 (0–+1.6) | 53 (2 A/g) | 19.02 | 1599 | 94 (2000/50 mV/s) | [78] |
RGO/MoS2/PANI | H2SO4 (0–+1) | 160 (1 A/g) | 22.3 | 5080 | - | [115] |
RGO/UCNTs/PANI | H2SO4 (0–+1) | 53 (0.5 A/g) | 7.4 | 189 | - | [119] |
3D PC-g/PANI | Na2SO4 (0–+1) | 440 (2 A/g) | 61 | 1000 | 94 (10,000/5 A/g) | [116] |
aMWCNT/GNS/PANI | Et4NBF4-AN (−0.6–+2) | - | 86.4 | 730 | 93 (10,000/-) | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Tkach, A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials 2022, 12, 2531. https://doi.org/10.3390/nano12152531
Okhay O, Tkach A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials. 2022; 12(15):2531. https://doi.org/10.3390/nano12152531
Chicago/Turabian StyleOkhay, Olena, and Alexander Tkach. 2022. "Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization" Nanomaterials 12, no. 15: 2531. https://doi.org/10.3390/nano12152531