Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization
Abstract
:1. Introduction
2. Graphene/Polyaniline Composites as Supercapacitor Electrodes
2.1. Increasing Cycling Stability of Polyaniline
2.2. Rising Specific Capacitance of Graphene-Related Material
3. Optimised In-Situ Chemical Oxidative Polymerization Processing Details
3.1. Aniline Monomer Content, Oxidants and Acids
3.2. Polymerization Time
4. Additives to Graphene/Polyaniline Composites
4.1. Metal Oxides and Hydroxides
4.2. Metal Selenides and Nitrides
4.3. Carbon Nanotubes
5. Symmetric Supercapacitors Based on PANI/RGO Electrodes
6. Summary and Outlook
- To analyse the time (speed) of the charge/discharge process, which is the one of the main differences between the supercapacitors and batteries as well as between the shape of CV and GCD;
- To test the cycling stability for longer periods of time (more than 10,000 cycles), which is important for practical applications;
- To develop/improve new methods for preparation of the porous materials on an industrial scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
| ABA | 4-aminobenzonic acid |
| ABF-G | 4-aminobenzoic acid- functionalized graphene |
| AcAc | acetic acid |
| AFG | amino-functionalized graphene |
| AmS | ammonia solution |
| ADF | anhydrous dimethylformamide |
| ANI | aniline monomer |
| aMWCNT | acid-treated multi-walled carbon nanotube |
| APS | ammonium peroxydisulphate |
| AT | amino-triazine |
| BA | benzoic acid |
| BD | 1,4-benzenediamine |
| BET | Brunauer, Emmett, and Teller |
| CA | citric acid |
| CCG | chemically converted graphene |
| CNT | carbon nanotube |
| COP | chemical oxidative polymerization |
| CSA | camphorsulfonic acid |
| CTAB | hexadecyltrimethylammonium bromide |
| CV | cyclic voltammetry |
| DAP | 1,3- diaminopropane |
| DMSO | dimethyl sulfoxide |
| EB | emeraldine base |
| EDA | ethylenediamine |
| EDLC | electric double-layer capacitors |
| EG | electrochemically exfoliated graphene |
| EtGl | ethylene glycol |
| Et4NBF4-AN | tetraacetylammonium-tetrafluoroborate-acetonitrile |
| G | graphene |
| GA | graphene aerogel |
| GF | graphene foam |
| GH | graphene hydrogel |
| GmH | hydrogel of graphene modified by m-phenylenediamine |
| GNS | graphene nanosheets |
| GNS-NH2 | 4-aminophenyl modified graphene |
| GNRs | graphene nanorods |
| GO | graphene oxide |
| GPH | graphene polyaniline hydrogel |
| GQDs | graphene quantum dots |
| HS | hollow sphere |
| HT | hydrothermal method |
| HQ | hydroquinone |
| HydrM | hydrazine monohydrate N2H4 |
| HydrH | hydrazine hydrate (N2H4∙H2O) |
| IN | isoamyl nitrite |
| LE | leucoemeraldine |
| MA | 4-methylaniline |
| MEG | microwave-exfoliated graphene sheets |
| MnO2/GR | MnO2-modified graphene |
| m-PDA | m-phenylenediamine |
| MSG | multi-growth site graphene |
| MW | microwave |
| N-DNE | N-(3-(dimethylamino)propyl)-N’-ethylcarbodiimide hydrochloride |
| NDTF | nitrophenyl diazonium tetrafluoroborate |
| NFG | graphene grown on Ni foam |
| N-HSM | N-Hydroxysuccinimide |
| OGH | oriented graphene hydrogel |
| OSAN | o-aminobenzenesuphonic acid |
| PA | phytic acid |
| PANI | polyaniline |
| p-ABA | p-aminobenzonic acid |
| PC-g | porous carbon-graphene |
| PE | pernigraniline |
| PG | pristine graphene |
| PGH | polyaniline graphene hydrogel |
| PPA | polyphosphoric acid |
| p-PDA | p-phenylenediamine |
| PVA | polyvinyl alcohol |
| RGO or rGO | reduced graphene oxide |
| RGOA | reduced graphene oxide aerogel |
| SC | supercapacitor |
| SDBS | sodium dodecylbenzene sulfonate |
| SDS | sodium dodecyl sulfate |
| SEM | scanning electron microscopy |
| SSA | specific surface area |
| ST | 2,4,6-tri(40-aminobenzenesulfonic acid)-1,3,5-triazine |
| TA | D-tartaric acid |
| TBA | tetrabutylammonium |
| TBAH | tetrabutylammonium hydroxide |
| TCTA | 2,4,6-trichloro- triazine |
| TD | 1,2,4-triaminobenzene dihydrochloride |
| TFA | trifluoroacetic acid |
| TMEG | tetrabutylammonium hydroxide stabilized microwave-exfoliated graphene |
| TPA | triphenylamine |
| TSA | p—toluenesulfonic acid |
| UCNTs | unzipped carbon nanotubes |
| UGA | unidirectional graphene aerogel |
References
- Sun, J.; Luo, B.; Li, H. A Review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: Past, present, and future. Adv. Energy Sustain. Res. 2022, 3, 2100191. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 201902007. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials—Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; He, D.; You, B. Laser engraving and punching of graphene films as flexible all-solid-state planar micro-supercapacitor electrodes. Mater. Today Sustain. 2021, 17, 100096. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Deng, H.; Du, Y.; Shi, X. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Züttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 2004, 78, 941–946. [Google Scholar] [CrossRef]
- Karthick, R.; Brindha, M.; Selvaraj, M.; Ramu, S. Stable colloidal dispersion of functionalized reduced graphene oxide in aqueous medium for transparent conductive film. J. Colloid Interface Sci. 2013, 406, 69–74. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef] [Green Version]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Lemine, A.S.; Zagho, M.M.; Altahtamouni, T.; Bensalah, N. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 2018, 42, 4284–4300. [Google Scholar] [CrossRef]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Yuan, J.; Zhang, K.; Yu, X.; Sun, Y.; Zhang, H.; Qin, L.-C. Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chem. Phys. Lett. 2017, 693, 60–65. [Google Scholar] [CrossRef]
- Huang, Z.-D.; Zhang, B.; Liang, R.; Zheng, Q.-B.; Oh, S.W.; Lin, X.-Y.; Yousefi, N.; Kim, J.-K. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 2012, 50, 4239–4251. [Google Scholar] [CrossRef]
- Alazmi, A.; El Tall, O.; Rasul, S.; Hedhili, M.N.; Patole, S.P.; Costa, P.M.F.J. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale 2016, 8, 17782–17787. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon Nanotube Based Fiber Supercapacitor as Wearable Energy Storage. Front. Mater. 2019, 6, 138. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced graphene oxide today. J. Mater. Chem. C 2019, 8, 1198–1224. [Google Scholar] [CrossRef]
- Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445. [Google Scholar] [CrossRef]
- Nguyen, T.; Montemor, M.D.F. Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices. Adv. Sci. 2019, 6, 1801797. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.M.; da Silva, M.I.; Toma, H.E.; Angnes, L.; Martins, P.R.; Araki, K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: A review. J. Mater. Chem. A 2020, 8, 10534–10570. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Bhardwaj, P.; Grace, A.N.; Stephan, A.M. Role of Polymers in Enhancing the Performance of Electrochemical Supercapacitors: A Review. Batter. Supercaps 2021, 4, 571–584. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Liu, X.; Zhu, Y.; Wu, Y.; van Ree, T. Metal oxides in supercapacitors. In Metal Oxides. Metal Oxides in Energy Technologies; Wu, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–203. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Ye, F.; Wang, W.; Wang, G.; Zhang, Z.; Li, S.; Zhou, Y.; Cai, J. Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. J. Power Sources 2019, 443, 227246. [Google Scholar] [CrossRef]
- Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Shen, Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 2016, 1, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Raji, A.-R.O.; Fei, H.; Yang, Y.; Samuel, E.L.G.; Tour, J.M. Nanocomposite of Polyaniline Nanorods Grown on Graphene Nanoribbons for Highly Capacitive Pseudocapacitors. ACS Appl. Mater. Interfaces 2013, 5, 6622–6627. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, X.; Zhu, Z.; Xiong, D.; Zhang, H.; Yang, W. Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chem. Eng. J. 2021, 423, 130203. [Google Scholar] [CrossRef]
- Feng, L.; Yan, B.; Zheng, J.; Chen, J.; Wei, R.; Jiang, S.; Yang, W.; Zhang, Q.; He, S. Soybean protein-derived N,O co-doped porous carbon sheets for supercapacitor applications. New J. Chem. 2022, 46, 10844–10853. [Google Scholar] [CrossRef]
- Moyseowicz, A.; Gryglewicz, G. Hydrothermal-assisted synthesis of a porous polyaniline/reduced graphene oxide composite as a high-performance electrode material for supercapacitors. Compos. Part B Eng. 2018, 159, 4–12. [Google Scholar] [CrossRef]
- Zhu, J.; Kong, L.; Shen, X.; Chen, Q.; Ji, Z.; Wang, J.; Xu, K.; Zhu, G. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors. Appl. Surf. Sci. 2018, 428, 348–355. [Google Scholar] [CrossRef]
- Hassan, M.; Reddy, K.R.; Haque, E.; Faisal, S.N.; Ghasemi, S.; Minett, A.I.; Gomes, V.G. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos. Sci. Technol. 2014, 98, 1–8. [Google Scholar] [CrossRef]
- Du, X.; Shi, X.; Li, Y.; Cao, K. Construction of N,S-co-doped graphene/polyaniline composite as free-standing electrode material. Int. J. Energy Res. 2020, 45, 6227–6238. [Google Scholar] [CrossRef]
- Wang, S.; Ma, L.; Gan, M.; Fu, S.; Dai, W.; Zhou, T.; Wang, H. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sources 2015, 299, 347–355. [Google Scholar] [CrossRef]
- Bulin, C.; Yu, H.; Ge, X.; Xin, G.; Xing, R.; Li, R.; Zhang, B. Preparation and supercapacitor performance of functionalized graphene aerogel loaded with polyaniline as a freestanding electrode. J. Mater. Sci. 2017, 52, 5871–5881. [Google Scholar] [CrossRef]
- Hong, X.; Zhang, B.; Murphy, E.; Zou, J.; Kim, F. Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. J. Power Sources 2017, 343, 60–66. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Qiu, L.; Li, D. Revisiting the capacitance of polyaniline by using graphene hydrogel films as a substrate: The importance of nano-architecturing. Energy Environ. Sci. 2012, 6, 477–481. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles. J. Chem. Educ. 2016, 93, 1606–1611. [Google Scholar] [CrossRef]
- Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.; Lim, H. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yu, H.; Xing, R.; Ge, X.; Sun, H.; Li, R.; Zhang, Q. Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochim. Acta 2018, 260, 504–513. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, R.; Wang, Z.; Liu, H. Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J. Mater. Chem. 2012, 22, 13619–13624. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zhong, W.; Yang, W. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J. Mater. Chem. A 2018, 6, 9245–9256. [Google Scholar] [CrossRef]
- Kim, M.; Lee, C.; Jang, J. Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity. Adv. Funct. Mater. 2013, 24, 2489–2499. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xu, X.; Wang, C. Facile Route for the Preparation of Functionalized Reduced Graphene Oxide/Polyaniline Composite and Its Enhanced Electrochemical Performance. ECS J. Solid State Sci. Technol. 2021, 10, 031003. [Google Scholar] [CrossRef]
- Ji, J.; Li, R.; Li, H.; Shu, Y.; Li, Y.; Qiu, S.; He, C.; Yang, Y. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors. Compos. Part B Eng. 2018, 155, 132–137. [Google Scholar] [CrossRef]
- Wang, J.; Xian, H.; Peng, T.; Sun, H.; Zheng, F. Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supercapacitors. RSC Adv. 2015, 5, 13607–13612. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, F.; Chang, J.; Wu, D.; Wang, X.; Wang, X.; Xu, F.; Gao, S.; Jiang, K. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim. Acta 2014, 133, 325–334. [Google Scholar] [CrossRef]
- Luo, J.; Zhong, W.; Zou, Y.; Xiong, C.; Yang, W. Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J. Power Sources 2016, 319, 73–81. [Google Scholar] [CrossRef]
- Wu, X.; Tang, L.; Zheng, S.; Huang, Y.; Yang, J.; Liu, Z.; Yang, W.; Yang, M. Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power Sources 2018, 397, 189–195. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; Wu, D.; Li, K.; Qin, Y.; Tao, Y.; Kong, Y. Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors. Chem. Commun. 2019, 55, 1738–1741. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, F.; Chen, N.; Tan, L.; Liu, C.; Hu, D.; Zhao, D. Enhanced capacitive performance of polyaniline on hydroquinone-functionalized three-dimensional porous graphene substrate for supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 5655–5667. [Google Scholar] [CrossRef]
- Wang, L.; Ye, Y.; Lu, X.; Wen, Z.; Li, Z.; Hou, H.; Song, Y. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors. Sci. Rep. 2013, 3, 3568. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Guang, S.; Xu, H.; Su, X. Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes. J. Mater. Chem. A 2013, 2, 813–823. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Guang, S.; Ke, F.; Xu, H. Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 2015, 83, 79–89. [Google Scholar] [CrossRef]
- Ke, F.; Liu, Y.; Xu, H.; Ma, Y.; Guang, S.; Zhang, F.; Lin, N.; Ye, M.; Lin, Y.; Liu, X. Flower-like polyaniline/graphene hybrids for high-performance supercapacitor. Compos. Sci. Technol. 2017, 142, 286–293. [Google Scholar] [CrossRef]
- Liu, J.; Du, P.; Wang, Q.; Liu, D.; Liu, P. Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochim. Acta 2019, 305, 175–186. [Google Scholar] [CrossRef]
- Li, J.; Ren, J.; Xu, Y.; Ji, H.; Zou, X. Facile synthesis and characterization of three-dimensional graphene/polyaniline composites with enhanced electrochemical properties. J. Mater. Sci. Mater. Electron. 2019, 30, 6650–6659. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Y.; Kong, P.; Tan, L.; Feng, H.; Luo, Y. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 2017, 392, 71–79. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Zhao, X.; Wu, L.; Zhang, Q. In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes. Synth. Met. 2013, 185–186, 89–95. [Google Scholar] [CrossRef]
- Hou, Z.; Zou, S.; Li, J. Morphology and structure control of amine- functionalized graphene/polyaniline composite for high-performance supercapacitors. J. Alloy. Compd. 2020, 827, 154390. [Google Scholar] [CrossRef]
- Chen, N.; Liu, C.; Tan, L.; Ren, Y.; Zhao, D.; Luo, Y.; Feng, H. Facile Synthesis of 4-Methylaniline Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors. J. Electron. Mater. 2019, 48, 4463–4472. [Google Scholar] [CrossRef]
- Ge, M.; Hao, H.; Lv, Q.; Wu, J.; Li, W. Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim. Acta 2019, 330, 135236. [Google Scholar] [CrossRef]
- Li, T.; Wang, X.; Liu, P.; Yang, B.; Diao, S.; Gao, Y. Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor. J. Electroanal. Chem. 2020, 860, 113908. [Google Scholar] [CrossRef]
- Kung, C.-Y.; Wang, T.-L.; Lin, H.-Y.; Yang, C.-H. A high-performance covalently bonded self-doped polyaniline–graphene assembly film with superior stability for supercapacitors. J. Power Sources 2021, 490, 229538. [Google Scholar] [CrossRef]
- Zhu, P. One-step Synthesis of Spherical Polyaniline/Graphene Composites by Microemulsion for Supercapacitors. Int. J. Electrochem. Sci. 2016, 9019–9029. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, P.; Xiong, Y.; Chen, H.; Kang, S.; Luo, H.; Guan, S. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 2016, 222, 12–19. [Google Scholar] [CrossRef]
- Mondal, S.; Rana, U.; Malik, S. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem. Commun. 2015, 51, 12365–12368. [Google Scholar] [CrossRef]
- Van Hoa, N.; Quyen, T.T.H.; Van Hieu, N.; Ngoc, T.Q.; Thinh, P.V.; Dat, P.A.; Nguyen, H.T.T. Three-dimensional reduced graphene oxide-grafted polyaniline aerogel as an active material for high performance supercapacitors. Synth. Met. 2017, 223, 192–198. [Google Scholar] [CrossRef]
- Breczko, J.; Grzeskiewicz, B.; Gradzka, E.; Bobrowska, D.M.; Basa, A.; Goclon, J.; Winkler, K. Synthesis of polyaniline nanotubes decorated with graphene quantum dots: Structural & electrochemical studies. Electrochim. Acta 2021, 388, 138614. [Google Scholar] [CrossRef]
- Zhou, Q.; Wei, T.; Yue, J.; Sheng, L.; Fan, Z. Polyaniline nanofibers confined into graphene oxide architecture for high-performance supercapacitors. Electrochim. Acta 2018, 291, 234–241. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, K.; Chan, H.S.O.; Wu, J. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 2011, 22, 80–85. [Google Scholar] [CrossRef]
- Kuzhandaivel, H.; Manickam, S.; Balasingam, S.K.; Franklin, M.C.; Kim, H.-J.; Nallathambi, K.S. Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors. New J. Chem. 2021, 45, 4101–4110. [Google Scholar] [CrossRef]
- Sekar, P.; Anothumakkool, B.; Kurungot, S. 3D Polyaniline Porous Layer Anchored Pillared Graphene Sheets: Enhanced Interface Joined with High Conductivity for Better Charge Storage Applications. ACS Appl. Mater. Interfaces 2015, 7, 7661–7669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Si, L.; Zhou, B.; Zhao, B.; Zhu, Y.; Zhu, L.; Jiang, X. Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chem. Eng. J. 2016, 288, 689–700. [Google Scholar] [CrossRef]
- Tang, W.; Peng, L.; Yuan, C.; Wang, J.; Mo, S.; Zhao, C.; Yu, Y.; Min, Y.; Epstein, A.J. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application. Synth. Met. 2015, 202, 140–146. [Google Scholar] [CrossRef]
- Salunkhe, R.; Hsu, S.-H.; Wu, K.C.-W.; Yamauchi, Y. Large-Scale Synthesis of Reduced Graphene Oxides with Uniformly Coated Polyaniline for Supercapacitor Applications. ChemSusChem 2014, 7, 1551–1556. [Google Scholar] [CrossRef]
- Wang, R.; Han, M.; Zhao, Q.; Ren, Z.; Guo, X.; Xu, C.; Hu, N.; Lu, L. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci. Rep. 2017, 7, srep44562. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Hierarchical Porous Graphene/Polyaniline Composite Film with Superior Rate Performance for Flexible Supercapacitors. Adv. Mater. 2013, 25, 6985–6990. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Wang, Y.; Ma, L.; Gao, X. Utilizing polyaniline to decorate graphene and its effect on the electrochemical properties of polyaniline/graphene electrode composite. Mater. Res. Express 2019, 6, 105614. [Google Scholar] [CrossRef]
- Li, J.; Xiao, D.; Ren, Y.; Liu, H.; Chen, Z.; Xiao, J. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials. Electrochim. Acta 2019, 300, 193–201. [Google Scholar] [CrossRef]
- Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 2015, 81, 552–563. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.; Zhong, Q.; Qin, Y.; Xu, A.; Li, W.; Shi, J. In Situ Synthesis of Trifluoroacetic Acid-Doped Polyaniline/Reduced Graphene Oxide Composites for High-Performance All-Solid-State Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8774–8785. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Yue, H.; Yao, F.; Zhang, X.; Guo, E.; Ma, Y.; Wang, Z.; Wang, Y. A Novel Polyaniline Nanowire Arrays/Three-Dimensional Graphene Composite for Supercapacitor. ChemistrySelect 2020, 5, 11004–11009. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392–1401. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 2017, 5, 5466–5474. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164–2170. [Google Scholar] [CrossRef]
- Bláha, M.; Varga, M.; Prokeš, J.; Zhigunov, A.; Vohlídal, J. Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur. Polym. J. 2013, 49, 3904–3911. [Google Scholar] [CrossRef]
- Ates, M.; El-Kady, M.; Kaner, R.B. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Nanotechnology 2018, 29, 175402. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, A.; Deb, S.K.; Gogoi, A.; Majumdar, A.; Dutta, P.; Reddy, K.A.; Maiti, U.N. Polyaniline–Graphene Hydrogel Hybrids via Diffusion Controlled Surface Polymerization for High Performance Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 12278–12287. [Google Scholar] [CrossRef]
- Song, P.; He, X.; Xie, M.; Tao, J.; Shen, X.; Ji, Z.; Yan, Z.; Zhai, L.; Yuan, A. Polyaniline wrapped graphene functionalized textile with ultrahigh areal capacitance and energy density for high-performance all-solid-state supercapacitors for wearable electronics. Compos. Sci. Technol. 2020, 198, 108305. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, R.; Zhong, W.; Yang, W. Mechanically robust double-crosslinked network functionalized graphene/polyaniline stiff hydrogels for superior performance supercapacitors. J. Mater. Chem. A 2018, 6, 8568–8578. [Google Scholar] [CrossRef]
- Liu, Z.; Li, D.; Li, Z.; Liu, Z.; Zhang, Z. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes. Appl. Surf. Sci. 2017, 422, 339–347. [Google Scholar] [CrossRef]
- Usman, M.; Pan, L.; Asif, M.; Mahmood, Z. Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. J. Mater. Res. 2015, 30, 3192–3200. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, B.; Luo, J.; Gu, Y.; Liu, X. Synthesis of Polyaniline@MnO2/Graphene Ternary Hybrid Hollow Spheres via Pickering Emulsion Polymerization for Electrochemical Supercapacitors. ACS Appl. Energy Mater. 2021, 4, 7721–7730. [Google Scholar] [CrossRef]
- Song, N.; Wu, Y.; Wang, W.; Xiao, D.; Tan, H.; Zhao, Y. Layer-by-layer in situ growth flexible polyaniline/graphene paper wrapped by MnO2 nanoflowers for all-solid-state supercapacitor. Mater. Res. Bull. 2018, 111, 267–276. [Google Scholar] [CrossRef]
- Charandabinezhad, S.R.; Asgharzadeh, H.; Arsalani, N. Synthesis and characterization of reduced graphene oxide/magnetite/polyaniline composites as electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 1864–1876. [Google Scholar] [CrossRef]
- Li, S.; Wu, D.; Cheng, C.; Wang, J.; Zhang, F.; Su, Y.; Feng, X. Polyaniline-Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angew. Chem. Int. Ed. 2013, 52, 12105–12109. [Google Scholar] [CrossRef]
- Haldar, P. Use of redox additive to enhance the electrochemical performance of Co3O4/polyaniline/graphene composite-based supercapacitors. J. Mater. Sci. Mater. Electron. 2020, 31, 7905–7915. [Google Scholar] [CrossRef]
- Wang, H. Design and Synthesis of Ternary Graphene/Polyaniline/Co3O4 Hierarchical Nanocomposites for Supercapacitors. Int. J. Electrochem. Sci. 2017, 3721–3731. [Google Scholar] [CrossRef]
- Ma, L.; Su, L.; Zhang, J.; Zhao, D.; Qin, C.; Jin, Z.; Zhao, K. A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor. J. Electroanal. Chem. 2016, 777, 75–84. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Yang, L.; Fan, G.; Lin, Y.; Li, F. Direct in situ assembly of bimetallic Co–Ni hydroxide/polyaniline-modified reduced graphene oxide nanocomposite for asymmetric flexible supercapacitor electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 6467–6478. [Google Scholar] [CrossRef]
- Li, H.; Zang, P.; Liu, H.; Li, J.; Zhang, B.; Yu, C.; Jiao, Y.; Li, H. Fabrication and electrochemical behavior of halloysite/ graphene-polyaniline three-dimensional hybrid aerogel loaded with iron oxide. J. Alloys Compd. 2021, 871, 159157. [Google Scholar] [CrossRef]
- Haldar, P. Achieving wide potential window and high capacitance for supercapacitors using different metal oxides (viz.: ZrO2, WO3 and V2O5) and their PANI/graphene composites with Na2SO4 electrolyte. Electrochim. Acta 2021, 381, 138221. [Google Scholar] [CrossRef]
- Giri, S.; Ghosh, D.; Das, C.K. Growth of Vertically Aligned Tunable Polyaniline on Graphene/ZrO2Nanocomposites for Supercapacitor Energy-Storage Application. Adv. Funct. Mater. 2013, 24, 1312–1324. [Google Scholar] [CrossRef]
- Huang, C.; Hao, C.; Zheng, W.; Zhou, S.; Yang, L.; Wang, X.; Jiang, C.; Zhu, L. Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Appl. Surf. Sci. 2019, 505, 144589. [Google Scholar] [CrossRef]
- Le, Q.B.; Vargun, E.; Fei, H.; Cheng, Q.; Bubulinca, C.; Moučka, R.; Sapurina, I.; Tran, T.D.; Kazantseva, N.E.; Saha, P. Effect of PANI and PPy on Electrochemical Performance of rGO/ZnMn2O4 Aerogels as Electrodes for Supercapacitors. J. Electron. Mater. 2020, 49, 4697–4706. [Google Scholar] [CrossRef]
- Sankar, K.V.; Selvan, R.K. The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv. 2014, 4, 17555–17566. [Google Scholar] [CrossRef]
- Sankar, K.V.; Selvan, R.K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J. Power Sources 2015, 275, 399–407. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Yin, H.; Hou, S.; Lin, H.; Zhou, J.; Zhuo, S. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 2020, 10, 3122–3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Yang, L.; Zhang, H.; Liu, J.; Hu, R.; Zhu, M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J. Power Sources 2020, 450, 227680. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Xin, S.; Yang, Z.; Li, Y.; Zhang, D.; Yao, P. Facile Synthesis of MoS2/Reduced Graphene Oxide@Polyaniline for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 21373–21380. [Google Scholar] [CrossRef]
- Mangisetti, S.R.; Kamaraj, M.; Ramaprabhu, S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors. Electrochim. Acta 2019, 305, 264–277. [Google Scholar] [CrossRef]
- Maity, C.K.; Hatui, G.; Sahoo, S.; Saren, P.; Nayak, G.C. Boron Nitride based Ternary Nanocomposites with Different Carbonaceous Materials Decorated by Polyaniline for Supercapacitor Application. ChemistrySelect 2019, 4, 3672–3680. [Google Scholar] [CrossRef]
- Sun, M.; Wang, G.; Yang, C.; Jiang, H.; Li, C. A graphene/carbon nanotube@π-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 3880–3890. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Gao, N.; Yin, Z.; Zhou, H.; Yang, X.; Kuang, Y. Synthesis of 3D reduced graphene oxide/unzipped carbon nanotubes/polyaniline composite for high-performance supercapacitors. Electrochim. Acta 2018, 269, 649–656. [Google Scholar] [CrossRef]
- Zhang, C.; Tjiu, W.W.; Liu, T. All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors. Polym. Chem. 2013, 4, 5785–5792. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]













| Materials for PANI-Based Composite | Used Graphene-Related Material (Starting Materials) | Amount of G in Composite, wt% | Cycling Stability of Pristine PANI//G/PANI Composite, % (at Number of Cycles/at Current Density or Scan Rate) | Specific Capacitance of PANI//G//G/PANI Composite, F/g (at Current Density or Scan Rate) | Ref. |
|---|---|---|---|---|---|
| HCl, ANI, APS | RGO (GO, HBr) | 2 | 87//91 (200/1 A/g) | 253//-//446 | [44] |
| HCl, ANI, APS (ANI:APS as 1:1.2) CSA, m-cresol/ chloroform solution, AmS | RGO (GO, HydrM) | - | 60//76 (500/0.45 A/g) | 256//-//431 (5 mV/s) | [46] |
| HCl, ANI, APS (APS:ANI as 1:1) | RGO (NaBH4, NH4OH, CTAB) | - | 51//85 (800/1 A/g) | 298//113//421 (0.6 A/g) | [47] |
| HCl, ANI, APS | MSG (GO, ascorbic acid) | 31.9 | 24 (1000)//89.5 (10,000/10 A/g) | 280//253//912 (1 A/g) | [43] |
| PA, ANI, APS (ANI:PA:APS as 10:2:2.5) | RGO (GO, HydrH) | 9 | 38//82 (1000/5 A/g) | 531//209//856 (1 A/g) | [48] |
| HCl, ANI, APS (APS:ANI as 1:1) | RGO (GO, 160 °C) (ANI:GO as 1:20) | - | 44//88 (1000/1 A/g) | 311//303//648 (0.5 A/g) | [49] |
| HCl, ANI, APS | p-PDA-G (GO, NaBH4, p-PDA, NaNO2) | 0.5 | 47//76 (1000/1 A/g) | 380//138//440 | [50] |
| PA, ANI, APS, p-PDA ((ANI and p-PDA):APS as 1:1) ((ANI and p-PDA):PA as 5:1) | RGO (GO, 180 °C) (GO:p-PDA:ANI as 1:1:25) | 3.6 | 53//94.4 (1000/20 A/g) | 448//-//538 (1 A/g) | [51] |
| HCl, ANI, APS | GA (GO, 1100 °C) | 69 | 57//74 (1000/3 A/g) | 312//243//538 (1 A/g) | [52] |
| HCl, ANI, APS | RGOA (GO, p-ABA, HCl, NaNO2, EtGl, AmS) | - | 60.6//72.3 (1000 /10 A/g) | 342//156//553 (1 A/g) | [53] |
| HCl, ANI, APS (ANI:APS as 2:1) | HQ-G (GO, HQ, 180 °C) | - | 62//82 (1000/10 mA/cm2) | 351//264 (1.14 A/g)//435 (22.73 A/g) | [54] |
| H2SO4, ANI, APS (ANI:APS as 4:1) | TBA-RGO (GO, HydrM, degassed acetonitrile, NDTF, TBAH, AcAc, Zn, NH4Cl) | - | 69//81 (1000/2 A/g) | 215//-//590 (0.1 A/g) | [55] |
| H2SO4, ANI, APS, SDS | GmH (GO, m-PDA), 180 °C) (PANI:GO as 7:1) | - | 78.9//87.1 (1000/10 A/g) | 325//-//514 (1 A/g) | [45] |
| H2SO4, ANI, APS | ST-GNS (GO, ST) | 10 | 47//85.7 (1500/100 mV/s) | 487//123//1225 (1 A/g) | [56] |
| HCl, ANI, APS | AFG (GO, HydrH, p-PDA, isoamyl nitrite) | 5 | 47//88 (1500/100 mV/s) | 487//238//1295 (1 A/g) | [57] |
| H2SO4, ANI, APS | AT-RGO (GO, HydrH, TCTA, p-PDA) | 5 | 47//89 (1500/100 mV/s) | 487//347//1510 (1 A/g) | [58] |
| HCl, ANI, APS | N-doped RGO (GO, NH4OH, H2O2, HydrH) | 10 | 43//97 (2000/100 mV/s) | 347//96//746 (1 A/g) | [59] |
| H2SO4, ANI, APS | GH (GO, 180 °C) | 9 | 52//89 (2000/10 A/g) | 401//291//618 (1 A/g) | [60] |
| HCl, ANI, APS (ANI:APS as 1:1) | RGO (GO, NaOH) (ANI:GO as 10:1) | 9 | 55//81.1 (2000/100 mV/s) | 397//-//524 (0.5 A/g) | [61] |
| H2SO4, ANI, APS | TMEG (MEG, TBAH) | 10 | 56 (2000)//90 (2000/100 mV/s) | 626//115//1225 (1 A/g) | [62] |
| HCl, ANI, APS (ANI:APS as 10:1) | TD-RGO (GO, TD, 180 °C) | 20 | 65//89 (2000/1 A/g) | 400//-//489 | [63] |
| HCl, ANI, APS (ANI:APS as 1:1) | MA-RGO (GO, MA, 95 °C) | - | 29//87.6 (3000/100 mV/s) | 368//-//530 (0.5 A/g) | [64] |
| HClO4, ANI, APS (ANI:APS as 3:2) | N-doped G (GO, EDA, 180 °C) | 35 | 43.3//87.4 (5000/5 A/g) | 310//317//620 (0.5 A/g) | [65] |
| HCl, ANI, APS, p-PDA, TPA | GNS-NH2 (GO, HydrH, NaNO2, BD, H2SO4) | 30 | 35//56.5 (4000/500 mV/s) | 859//-//967 (0.5 A/g) | [66] |
| OSAN, ANI, APS | ABF-G (graphite powder, ABA, PPA, P2O5) | 3 | - | 378//-//642 (1 A/g) | [67] |
| HCl, ANI, APS | RGO (GO, HydrH, 100 °C) | 6 | -//78.8 (1000/2 A/g) | 318//-//496 | [68] |
| H2SO4, ANI, APS (ANI:APS as 4:1) | G (GO, HydrH, 95 °C) | - | -//84 (1500/2 A/g) | 333//-//596 (0.5 A/g) | [69] |
| Water, ANI, APS | GQDs (GO, H2O2, 90 °C) | 10 | -//80.1 (3000/1 A/g) | 206//-//1044 (1 A/g) | [70] |
| HCl, ANI, APS, K2S2O8 | N-grafted G (GO, ADF, N-HSM, N-DNE, DAP, 180 °C) | - | -//91.3 (3000/4 A/g) | 600//-//1600 (12 A/g) | [71] |
| H2O, ANI, TSA, APS | GQDs (citric acid) | - | -//100 (7000/7 A/g) | 93//-//245 | [72] |
| HCl, ANI, APS | RGO (GO, HydrH) | 2 | -//- | 323//-//552 (0.5 A/g) | [73] |
| HCl, ANI, APS | TBAOH-G (GO, TBAH, SDBS) | 35 | -//- | 264//-//526 (0.2 A/g) | [74] |
| HCl, ANI, H2SO4, APS | S-N-doped GQDs (GO, citric acid, thiourea) | - | -//- | 177//-//645 (0.5 A/g) | [75] |
| PA, HCl, ANI, APS | ABA-RGO (GO, NaBH4, NaNO2, ABA) | - | -//- | 512//-//652 | [76] |
| Used Graphene-Material | Materials for PANI-Based Composite | PANI Amount in G/PANI Composite, wt% | Specific Capacitance of G//PANI//G/PANI, F/g (at Current Density or Scan Rate) | Cycling Stability of Composite, % (Cycle Number/at Current Density or Scan Rate) | Ref. |
|---|---|---|---|---|---|
| GO-PG (graphite powder, DMSO, Na3C6H5O7×2H2O) | HCl, ANI, APS | 20 | 50//-//794 (1 A/g) | 83.4 (1000/100 mV/s) | [77] |
| 3D RGO (GO, NaCO3, CaCl2, CaCO3, glucose, NH4OH, 180 °C) | HClO4, ANI, APS | - | 88.9//-//243 (1 A/g) | 87 (1000/1 A/g) | [79] |
| RGO (GO, HydrH) | HClO4, ANI, APS | - | 90//78//286 (5 mV/s) | 94 (2000/50 mV/s) | [78] |
| N-doped RGO (GO, AmS, H2O2) | HCl, ANI, APS | 90 | 96//347//746 (1 A/g) | 97 (2000/100 mV/s) | [59] |
| GNS (GO, 180 °C) | HCl, ANI, APS | - | 102//353//286 (2 mV/s) | 94 (2000/50 mV/s) | [80] |
| 3D-RGO (GO, CaCl2, AmS) | HClO4, ANI, APS | - | 110//-//385 (0.5 A/g) | 90 (5000/5 A/g) | [81] |
| RGO (NaBH4, NH4OH, CTAB) | HCl, ANI, APS (APS:ANI as 1:1) | - | 113//298//421 (0.6 A/g) | 85 (800/1 A/g) | [47] |
| TMEG (MEG, TBAH) | H2SO4, ANI, APS | 90 | 115//626//1225 (1 A/g) | 90 (2000/100 mV/s) | [62] |
| RGO (NaBH4, 95 °C) | HCl, ANI, APS | - | 120//105//147 (0.5 A/g) | - | [82] |
| ST-GNS (GO, ST) | H2SO4, ANI, APS | 90 | 123//487//1225 (1 A/g) | 85.7 (1500/100 mV/s) | [56] |
| G (GO, HydrH) | HClO4, ANI, APS, chloroform | - | 125//245//578 (1 A/g) | - | [83] |
| N,S-doped GH (GO, urea, triourea, 180 °C) | HCl, ANI, APS | - | 130//-//237 (0.5 A/g) | 95 (1000/10 A/g) | [36] |
| p-PDA-G (GO, NaBH4, P-PDA, NaNO2) | HCl, ANI, APS | 99.5 | 138//380//440 (1 A/g) | 76 (1000/1 A/g) | [50] |
| B-doped G (GO, H3BO3, 180 °C) (ANI:B-doped G as 1:1) | HCl, ANI, APS (ANI:APS as 1:1) | 50 | 158//284//406 (1 mV/s) | 90 (5000/2 A/g) | [84] |
| RGOA (GO, ABA, HCl, NaNO2, EtGl, AmS) | HCl, ANI, APS | - | 156//342//553 (1 A/g) | 72.3 (1000/10 A/g) | [53] |
| RGO (GO, HydrH) | H2O, TFA, ANI, APS (TFA:ANI:APS as 1:2:2) | 80 | 156//325//810 (1 A/g) | - | [85] |
| GNS (GO, HydrH) | HCl, ANI, APS | 85 | 183//115//1046 (1 mV/s) | - | [86] |
| RGO (GO, 180 °C) (GO: p-PDA:ANI as 1:1:25) | PA, ANI, APS, p-PDA (ANI + p-PDA):APS as 1:1 (ANI + p-PDA):PA as 5:1 | - | 190//-//610 (1 A/g) | 94.4 (1000/20 A/g) | [51] |
| 3D RGO (GO, HydrM, AmS) | HClO4, ANI, APS (ANI:APS as 1.5:1) | - | 190//-//740 (0.5 A/g) | 87 (1000/10 A/g) | [37] |
| 3D G (HNO3, H2SO4, Ni NPs as template, 900 °C, Ar, H2, CH4) | H2SO4, ANI, APS (ANI:APS as 4:1) | - | 201//-//680 (1 A/g) | 76 (1000/10 A/g) | [87] |
| G (GO, HydrM, 95 °C) | HCl, ANI, APS | 20 | 206//420//480 (1 A/g) | - | [88] |
| RGO (GO, sodium ascorbate, 95 °C) | HCl, ANI, APS, methylbenzene (ANI:APS as 4:1) | 30 | 208//-//777 (1 A/g) | 85 (6000/5 A/g) | [89] |
| RGO (GO, HydrH) | PA, ANI, APS (ANI:PA:APS as 10:2:2.5) | 91 | 209//531//856 (1 A/g) | 82 (1000/5 A/g) | [48] |
| p-PDA-AFG (GO, HydrH, p-PDA, isoamyl nitrite) | HCl, ANI, APS | 95 | 238//487//1295 (1 A/g) | 88 (1500/100 mV/) | [57] |
| GA (GO, 1100 °C) | HCl, ANI, APS | 31 | 243//312//538 (1 A/g) | 74 (1000/3 A/g) | [52] |
| MSG (GO, ascorbic acid) | HCl, ANI, APS | 68.1 | 253//280//912 (1 A/g) | 89.5 (10,000/10 A/g) | [43] |
| HQ-G (GO, HQ, 180 °C) | HCl, ANI, APS (ANI:APS as 2:1) | - | 264 (1.14 A/g)//351//435 (22.73 A/g) | 82 (1000/10 mA/cm2) | [54] |
| GH (GO, 180 °C) | H2SO4, ANI, APS | 91 | 291//401//618 (1 A/g) | 89 (2000/10 A/g) | [60] |
| RGO (GO, 160 °C) (ANI:GO as 1:20) | HCl, ANI, APS (APS:ANI as 1:1) | - | 303//311//648 (0.5 A/g) | 88 (1000/1 A/g) | [49] |
| RGO (GO, EtGl, NaOH, 90 °C) | HCl, ANI, APS (ANI:APS as 1:1) | 7.7 | 316//777//1126 (1 mV/s) | 84 (1000/0.2 A/g) | [90] |
| N-doped G (GO, EDA, 180 °C) | HClO4, ANI, APS (ANI:APS as 3:2) | 65 | 317//310//620 (0.5 A/g) | 87.4 (5000/5 A/g) | [65] |
| GA (GO, 140 °C, p-PDA) | HCl, ANI, APS | 79.1 | 338//-//810 (1 A/g) | 83.2 (10,000/-) | [38] |
| AT-RGO (GO, HydrH, TCTA, p-PDA) | H2SO4, ANI, APS | 95 | 347//487//1510 (1 A/g) | 89 (1500/100 mV/) | [58] |
| Composite Electrodes | Electrolyte (Potential Window, V) | Specific Capacitance of Symmetric SC, F/g (at Current Density) | Specific Energy (Wh/kg) | Specific Power (W/kg) | Cycling Stability of Symmetric SC, % (at Number of Cycles/at Current Density or Scan Rate) | Ref. |
|---|---|---|---|---|---|---|
| MSG/PANI | H2SO4-PVA (0–+0.8) | 120 (1 A/g) | 30 | 850 | 90 (5000/10 A/g) | [43] |
| RGO/PANI | H2SO4-PVA (−0.2–+0.8) | 700 (1 A/g) | 62.2 | 800 | 91.3 (2000/5 A/g) | [85] |
| GO-PG/PANI | H2SO4 (0–+0.7) | 564 (2 A/g) | 50.2 | 2143.8 | 80 (1000/100 mV/s) | [77] |
| 3D-RGO/PANI | H2SO4 (0–+0.7) | 385 (0.5 A/g) | - | - | 88 (5000/5 A/g) | [81] |
| GH/PANI | H2SO4 (0–+0.8) | 503 (5 A/g) | 29.85 | 1160 | 95.8 (3000/5 A/g) | [93] |
| ABA-RGO/PANI | H2SO4 (0–+0.8) | 512 (1 A/g) | - | - | >100 (4000/5 A/g) | [76] |
| B-doped G/PANI | H2SO4 (−0.2–+0.6) | 241 (0.5 A/g) | 19.9 | 523.5 | ~100 (5000/5 A/g) | [84] |
| N-doped RGO/PANI | H2SO4 (−0.2–+0.8) | 510 (1 A/g) | 24.7 | 329.5 | 74 (2000/3 A/g) | [59] |
| 3D G/PANI | H2SO4 (−0.2–+0.8) | 72 (1 A/g) | 6.43 | 400 | 78 (1000/10 A/g) | [87] |
| RGO/PANI | H2SO4 (−0.2–+0.8) | 665 (1 A/g) | 10.9 | - | 100 (10,000/5 A/g) | [89] |
| GA/PANI | H2SO4 (−0.2–+0.8) | 211 (-) | ~30 | <50 | ~100 (10,000/10 A/g) | [38] |
| GH/PANI | H2SO4 (−0.2–+0.8) | 311 (0.4 A/g) | 66.3 | 539.9 | 99 (1000/100 mV/s) | [92] |
| GNS-NH2/PANI | H2SO4 (−0.2–+0.8) | 110 (0.1 A/g) | 15.3 | 50 | 94.9 (5000/500 mV/s) | [66] |
| RGO/PANI/ | H2SO4 (−0.2–+0.8) | - | 30 | 216 | 91.21 (1000/20 mV/s) | [73] |
| S-N-doped GQDs/PANI | H2SO4 (0–+1) | 124 (1 A/g) | 17.25 | 500 | 90 (1000/2.5 A/g) | [75] |
| RGO/PANI | H2SO4 (0–+1.6) | 53 (2 A/g) | 19.02 | 1599 | 94 (2000/50 mV/s) | [78] |
| RGO/MoS2/PANI | H2SO4 (0–+1) | 160 (1 A/g) | 22.3 | 5080 | - | [115] |
| RGO/UCNTs/PANI | H2SO4 (0–+1) | 53 (0.5 A/g) | 7.4 | 189 | - | [119] |
| 3D PC-g/PANI | Na2SO4 (0–+1) | 440 (2 A/g) | 61 | 1000 | 94 (10,000/5 A/g) | [116] |
| aMWCNT/GNS/PANI | Et4NBF4-AN (−0.6–+2) | - | 86.4 | 730 | 93 (10,000/-) | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Tkach, A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials 2022, 12, 2531. https://doi.org/10.3390/nano12152531
Okhay O, Tkach A. Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials. 2022; 12(15):2531. https://doi.org/10.3390/nano12152531
Chicago/Turabian StyleOkhay, Olena, and Alexander Tkach. 2022. "Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization" Nanomaterials 12, no. 15: 2531. https://doi.org/10.3390/nano12152531
APA StyleOkhay, O., & Tkach, A. (2022). Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials, 12(15), 2531. https://doi.org/10.3390/nano12152531
