Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.; Haasz, A.A.; Hassanein, A.; Philipps, V.; Pitcher, C.S.; Roth, J. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 2001, 41, 1967–2137. [Google Scholar] [CrossRef]
- Choi, H.; Schleicher, R.W. The Energy Multiplier Module (EM2): Status of Conceptual Design. Nucl. Technol. 2017, 200, 106–124. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Wiffen, F.W. Radiation Effects in Refractory Alloys. AIP Conf. Proc. 2004, 699, 733–740. [Google Scholar] [CrossRef]
- Li, J.-T.; Beyerlein, I.J.; Han, W.-Z. Helium irradiation-induced ultrahigh hardening in niobium. Acta Mater. 2022, 226, 117656. [Google Scholar] [CrossRef]
- Zheng, R.-Y.; Jian, W.-R.; Beyerlein, I.J.; Han, W.-Z. Atomic-Scale Hidden Point-Defect Complexes Induce Ultrahigh-Irradiation Hardening in Tungsten. Nano Lett. 2021, 21, 5798–5804. [Google Scholar] [CrossRef]
- Baldwin, M.J.; Doerner, R.P. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl. Fusion 2008, 48, 035001. [Google Scholar] [CrossRef]
- Baldwin, M.J.; Doerner, R.P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades. J. Nucl. Mater. 2010, 404, 165–173. [Google Scholar] [CrossRef]
- Zenobia, S.J.; Garrison, L.M.; Kulcinski, G.L. The response of polycrystalline tungsten to 30keV helium ion implantation at normal incidence and high temperatures. J. Nucl. Mater. 2012, 425, 83–92. [Google Scholar] [CrossRef]
- Yajima, M.; Ohno, N.; Kajita, S.; De Temmerman, G.; Bystrov, K.; Bardin, S.; Morgan, T.W.; Masuzaki, S. Investigation of arcing on fiber-formed nanostructured tungsten by pulsed plasma during steady state plasma irradiation. Fusion Eng. Des. 2016, 112, 156–161. [Google Scholar] [CrossRef]
- El-Atwani, O.; Hinks, J.A.; Greaves, G.; Allain, J.P.; Maloy, S.A. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater. Res. Lett. 2017, 5, 343–349. [Google Scholar] [CrossRef]
- El-Atwani, O.; Nathaniel, J.E., II; Leff, A.C.; Muntifering, B.R.; Baldwin, J.K.; Hattar, K.; Taheri, M.L. The role of grain size in He bubble formation: Implications for swelling resistance. J. Nucl. Mater. 2017, 484, 236–244. [Google Scholar] [CrossRef]
- Qin, W.; Jin, S.; Cao, X.; Wang, Y.; Peres, P.; Choi, S.-Y.; Jiang, C.; Ren, F. Influence of nanochannel structure on helium-vacancy cluster evolution and helium retention. J. Nucl. Mater. 2019, 527, 151822. [Google Scholar] [CrossRef]
- Qin, W.; Ren, F.; Doerner, R.P.; Wei, G.; Lv, Y.; Chang, S.; Tang, M.; Deng, H.; Jiang, C.; Wang, Y. Nanochannel structures in W enhance radiation tolerance. Acta Mater. 2018, 153, 147–155. [Google Scholar] [CrossRef]
- Lu, C.; Lu, Z.; Xie, R.; Liu, C.; Wang, L. Microstructure of a 14Cr-ODS ferritic steel before and after helium ion implantation. J. Nucl. Mater. 2014, 455, 366–370. [Google Scholar] [CrossRef]
- Buzi, L.; Yeh, M.; Yeh, Y.-W.; Donaldson, O.K.; Patino, M.I.; Trelewicz, J.R.; Yao, N.; Doerner, R.; Koel, B.E. Deuterium and helium ion irradiation of nanograined tungsten and tungsten–titanium alloys. Nucl. Mater. Energy 2019, 21, 100713. [Google Scholar] [CrossRef]
- Li, N.; Nastasi, M.; Misra, A. Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 2012, 32–33, 1–16. [Google Scholar] [CrossRef]
- Taylor, C.A.; Lang, E.; Kotula, P.G.; Goeke, R.; Snow, C.S.; Wang, Y.; Hattar, K. Helium Bubbles and Blistering in a Nanolayered Metal/Hydride Composite. Materials 2021, 14, 5393. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Wang, C.; Xia, S.; Ge, W.; Liu, Q.; Su, Y.; Gao, Z.; Zhao, S.; Du, C.; et al. Effects of grain boundaries and nano-precipitates on helium bubble behaviors in lanthanum-doped nanocrystalline steel. Scr. Mater. 2021, 200, 113900. [Google Scholar] [CrossRef]
- Chen, Z.; Niu, L.-L.; Wang, Z.; Tian, L.; Kecskes, L.; Zhu, K.; Wei, Q. A comparative study on the in situ helium irradiation behavior of tungsten: Coarse grain vs. nanocrystalline grain. Acta Mater. 2018, 147, 100–112. [Google Scholar] [CrossRef]
- Donaldson, O.K.; Hattar, K.; Kaub, T.; Thompson, G.B.; Trelewicz, J.R. Solute stabilization of nanocrystalline tungsten against abnormal grain growth. J. Mater. Res. 2018, 33, 68–80. [Google Scholar] [CrossRef]
- Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S.S.; Hassanein, A. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples. Sci. Rep. 2014, 4, 6845. [Google Scholar] [CrossRef] [PubMed]
- Imran Shaban, B.; Arshad, K. The Role of Vanadium in Reduction of Helium Diffusion in Tungsten Based Alloys. Adv. Mater. Res. 2014, 1016, 331–335. [Google Scholar] [CrossRef]
- Gonderman, S.; Tripathi, J.K.; Novakowski, T.J.; Sizyuk, T.; Hassanein, A. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions. J. Nucl. Mater. 2017, 491, 199–205. [Google Scholar] [CrossRef]
- Xu, M.-Y.; Luo, L.-M.; Zhou, Y.-F.; Zan, X.; Xu, Y.; Xu, Q.; Tokunaga, K.; Zhu, X.-Y.; Wu, Y.-C. Helium irradiation behavior of tungsten-niobium alloys under different ion energies. Fusion Eng. Des. 2018, 132, 7–12. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, H.; Yu, J.; Han, W.; Liu, M.; Chen, C.; Zhu, K. Effect of vanadium alloying on irradiation performance of tungsten under 60 keV helium irradiation. J. Nucl. Mater. 2018, 512, 65–71. [Google Scholar] [CrossRef]
- Waseem, O.A.; Ryu, H.J. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications. Sci. Rep. 2017, 7, 1926. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Chen, W.; Tang, Q.H.; Wang, H.; Xie, Y.C.; Yan, X.H.; Dai, P.Q. Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy. Mater. Sci. Technol. 2018, 34, 1309–1315. [Google Scholar] [CrossRef]
- Zou, Y.; Okle, P.; Yu, H.; Sumigawa, T.; Kitamura, T.; Maiti, S.; Streurer, W.; Spolenak, R. Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 2017, 128, 95–99. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Li, D.; Chen, Z.; Wang, F.; Wu, M. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy. Int. J. Refract. Metals Hard Mater. 2020, 88, 105195. [Google Scholar] [CrossRef]
- Melia, M.A.; Whetten, S.R.; Puckett, R.; Jones, M.; Heiden, M.J.; Argibay, N.; Kustas, A.B. High-throughput additive manufacturing and characterization of refractory high entropy alloys. Appl. Mater. Today 2020, 19, 100560. [Google Scholar] [CrossRef]
- Jones, M.R.; Nation, B.L.; Wellington-Johnson, J.A.; Curry, J.F.; Kustas, A.B.; Lu, P.; Chandross, M.; Argibay, N. Evidence of Inverse Hall-Petch Behavior and Low Friction and Wear in High Entropy Alloys. Sci. Rep. 2020, 10, 10151. [Google Scholar] [CrossRef] [PubMed]
- Kustas, A.B.; Susan, D.F.; Johnson, K.L.; Whetten, S.R.; Rodriguez, M.A.; Dagel, D.J.; Michael, J.R.; Keicher, D.M.; Argibay, N. Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS). Addit. Manuf. 2018, 21, 41–52. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM-The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Nordlund, S.J.Z.K.; Suzudo, T.; Averback, R.S.; Meinander, A.; Granberg, F.; Malerba, L.; Stoller, R.E.; Banhart, F.; Weber, W.J.; Willaime, F.; et al. Primary Radiation Damage in Materials: Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate In-cascade Mixing and Defect Production Efficiency Effects; OECD Nuclear Energy Agency: Paris, France, 2015; Available online: https://www.oecd-nea.org/science/docs/2015/nsc-doc2015-9.pdf (accessed on 29 May 2022).
- Li, S.-H.; Li, J.-T.; Han, W.-Z. Radiation-Induced Helium Bubbles in Metals (in eng). Materials 2019, 12, 1036. [Google Scholar] [CrossRef]
- Wang, X.; Jin, K.; Chen, D.; Bei, H.; Wang, Y.; Weber, W.J.; Zhang, Y.; Poplawsky, J.; More, K.L. Investigating Effects of Alloy Chemical Complexity on Helium Bubble Formation by Accurate Segregation Measurements Using Atom Probe Tomography. Microsc. Microanal. 2019, 25, 1558–1559. [Google Scholar] [CrossRef]
- Vegard, L.Z. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-ion irradiation resistance of CrMnFeCoNi high-entropy alloy revealed by comparison study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 35, 300–305. [Google Scholar] [CrossRef]
- Jia, N.; Li, Y.; Huang, H.; Chen, S.; Li, D.; Dou, Y.; He, X.; Yang, W.; Xue, Y.; Jin, K. Helium bubble formation in refractory single-phase concentrated solid solution alloys under MeV He ion irradiation. J. Nucl. Mater. 2021, 550, 152937. [Google Scholar] [CrossRef]
- Seletskaia, T.; Osetsky, Y.; Stoller, R.E.; Stocks, G.M. First-principles theory of the energetics of He defects in bcc transition metals. Phys. Rev. B 2008, 78, 134103. [Google Scholar] [CrossRef]
- Lu, C.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Mater. 2017, 127, 98–107. [Google Scholar] [CrossRef]
- Wang, X.; Jin, K.; Chen, D.; Bei, H.; Wamg, Y.; Weber, W.J.; Zhang, Y.; More, K.L. Effects of Fe concentration on helium bubble formation in NiFex single-phase concentrated solid solution alloys. Materialia 2019, 5, 100183. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, E.; Burns, K.; Wang, Y.; Kotula, P.G.; Kustas, A.B.; Rodriguez, S.; Aitkaliyeva, A.; Hattar, K. Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation. Nanomaterials 2022, 12, 2014. https://doi.org/10.3390/nano12122014
Lang E, Burns K, Wang Y, Kotula PG, Kustas AB, Rodriguez S, Aitkaliyeva A, Hattar K. Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation. Nanomaterials. 2022; 12(12):2014. https://doi.org/10.3390/nano12122014
Chicago/Turabian StyleLang, Eric, Kory Burns, Yongqiang Wang, Paul G. Kotula, Andrew B. Kustas, Sal Rodriguez, Assel Aitkaliyeva, and Khalid Hattar. 2022. "Compositional Effects of Additively Manufactured Refractory High-Entropy Alloys under High-Energy Helium Irradiation" Nanomaterials 12, no. 12: 2014. https://doi.org/10.3390/nano12122014