Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material Preparation
2.2. In Situ Characterization of Phase Transition by Synchrotron Radiation
2.3. Ex Situ Characterization of Phase Transition by Electron Microscopy
3. Results
3.1. Phase Transition at Micrometer Length Scales
3.2. Phase Transition at Nanometer Length Scales
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Collins, P.C.; Brice, D.A.; Samimi, P.; Ghamarian, I.; Fraser, H.L. Microstructural Control of Additively Manufactured Metallic Materials. Annu. Rev. Mater. Res. 2016, 46, 63–91. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive Manufacturing of Metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, S.; Qiu, D.; Gibson, M.A.; Dargusch, M.S.; Brandt, M.; Qian, M.; Easton, M. Metal Alloys for Fusion-Based Additive Manufacturing. Adv. Eng. Mater. 2018, 20, 1700952. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components—Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Chatterjee, A.; Sprague, E.; Mazumder, J.; Misra, A. Hierarchical Microstructures and Deformation Behavior of Laser Direct-Metal-Deposited Cu–Fe Alloys. Mater. Sci. Eng. A 2021, 802, 140659. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Tan, Q.; Yin, Y.; Liu, S.; Li, M.; Li, M.; Liu, Q.; Zhou, Y.; Wu, T.; et al. Additive Manufacturing of High Strength Copper Alloy with Heterogeneous Grain Structure through Laser Powder Bed Fusion. Acta Mater. 2021, 220, 117311. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Yang, B.; Ye, X.; Zhang, P.; Lang, H.; Lei, Q. Hierarchical Microstructure and Strengthening Mechanism of Cu-36. 8Fe Alloy Manufactured by Selective Laser Melting. J. Alloys Compd. 2021, 895, 162701. [Google Scholar] [CrossRef]
- Bancroft, D.; Peterson, E.L.; Minshall, S. Polymorphism of Iron at High Pressure. J. Appl. Phys. 1956, 27, 291–298. [Google Scholar] [CrossRef]
- Watanabe, D.; Watanabe, C.; Monzen, R. Effect of Coherency on Coarsening of Second-Phase Precipitates in Cu-Base Alloys. J. Mater. Sci. 2008, 43, 3946–3953. [Google Scholar] [CrossRef]
- Giles, P.M.; Longenbach, M.H.; Marder, A.R. High-Pressure A⇄ε Martensitic Transformation in Iron. J. Appl. Phys. 1971, 42, 4290–4295. [Google Scholar] [CrossRef]
- Barker, L.M.; Hollenbach, R.E. Shock Wave Study of the α ⇄ ε Phase Transition in Iron. J. Appl. Phys. 1974, 45, 4872–4887. [Google Scholar] [CrossRef]
- Dewaele, A.; Denoual, C.; Anzellini, S.; Occelli, F.; Mezouar, M.; Cordier, P.; Merkel, S.; Véron, M.; Rausch, E. Mechanism of the α-ε Phase Transformation in Iron. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 174105. [Google Scholar] [CrossRef]
- Merkel, S.; Goncharov, A.F.; Mao, H.; Gillet, P.; Hemley, R.J. Raman Spectroscopy of Iron to 152 Gigapascals: Implications for Earth’s Inner Core. Science 2017, 288, 1626–1629. [Google Scholar] [CrossRef] [Green Version]
- Bassett, W.A.; Huang, E. Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transition in Iron. Science 1987, 238, 780–783. [Google Scholar] [CrossRef]
- Merkel, S.; Liermann, H.P.; Miyagi, L.; Wenk, H.R. In Situ Radial X-ray Diffraction Study of Texture and Stress during Phase Transformations in Bcc-, Fcc-and Hcp-Iron up to 36 GPa and 1000 K. Acta Mater. 2013, 61, 5144–5151. [Google Scholar] [CrossRef] [Green Version]
- Wendt, H.; Wagner, R. Mechanical Properties of Cu-Fe Alloys in the Transition from Solid Solution to Precipitation Hardening. Acta Metall. 1982, 30, 1561–1570. [Google Scholar] [CrossRef]
- Matsuura, K.; Kitamura, M.; Watanabe, K. The Precipitation Hardening of Cu-Fe Alloy Single Crystals with Coherent y-Iron Particles. Trans JIM 1978, 19, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Sui, M.L.; Chen, Y.T.; Lu, Q.H.; Ma, E.; Pei, X.Y.; Li, Q.Z.; Hu, H.B. Microstructural Fingerprints of Phase Transitions in Shock-Loaded Iron. Sci. Rep. 2013, 3, 1086. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, D.H.; Belak, J.F.; Collins, G.W.; Colvin, J.D.; Davies, H.M.; Eggert, J.H.; Germann, T.C.; Hawreliak, J.; Holian, B.L.; Kadau, K.; et al. Direct Observation of the α-ε Transition in Shock-Compressed Iron via Nanosecond X-ray Diffraction. Phys. Rev. Lett. 2005, 95, 075502. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, L.M.; Gray, G.T.; Cerreta, E.K.; McCabe, R.J.; Field, R.D.; Bingert, J.F. Rare Twin Linked to High-Pressure Phase Transition in Iron. Scr. Mater. 2009, 60, 772–775. [Google Scholar] [CrossRef]
- Burgers, W.G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium. Physica 1934, 1, 561–586. [Google Scholar] [CrossRef]
- Fujiwara, H.; Inomoto, H.; Sanada, R.; Ameyama, K. Nano-Ferrite Formation and Strain-Induced-Ferrite Transformation in an SUS316L Austenitic Stainless Steel. Scr. Mater. 2001, 44, 2039–2042. [Google Scholar] [CrossRef]
- Ivanisenko, Y.; MacLaren, I.; Sauvage, X.; Valiev, R.Z.; Fecht, H.J. Shear-Induced α → γ Transformation in Nanoscale Fe-C Composite. Acta Mater. 2006, 54, 1659–1669. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guyot, F. Experimental Study of the Bcc-Fcc Phase Transformations in the Fe-Rich System Fe-Si at High Pressures. Phys. Chem. Miner. 1999, 26, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Chen, X.; Wang, Z. Precipitates-Interaction Capture of Nano-Sized Iron-Rich Precipitates during Copper Solidification. Mater. Sci. Technol. 2019, 35, 1028–1037. [Google Scholar] [CrossRef]
- Shi, G.; Chen, X.; Jiang, H.; Wang, Z.; Tang, H.; Fan, Y. Strengthening Mechanisms of Fe Nanoparticles for Single Crystal Cu-Fe Alloy. Mater. Sci. Eng. A 2015, 636, 43–47. [Google Scholar] [CrossRef]
- Watanabe, D.; Watanabe, C.; Monzen, R. Determination of the Interface Energies of Spherical, Cuboidal and Octahedral Face-Centered Cubic Precipitates in Cu-Co, Cu-Co-Fe and Cu-Fe Alloys. Acta Mater. 2009, 57, 1899–1911. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.; Mori, M.; Mori, T. Plastic Deformation and Martensitic Transformation of γ-Fe Particle in Cu-Fe Single Crystal. Trans. Japan Inst. Met. 1984, 25, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Monzen, R.; Sato, A.; Mori, T. Structural Changes of Iron Particles in a Deformed and Annealed Cu-Fe Alloy Single Crystal. Trans. Jpn. Inst. Met. 1981, 22, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Easterling, K.E.; Weatherly, G.C. On the Nucleation of Martensite in Iron Precipitates. Acta Metall. Mater. 1969, 17, 845–852. [Google Scholar] [CrossRef]
- Kinsman, K.R.; Sprys, J.W.; Asaro, R.J. Structure of Martensite in Very Small Iron-Rich Precipitates. Acta Metall. 1975, 23, 1431–1442. [Google Scholar] [CrossRef]
- Marcus, P.M.; Jona, F.; Qiu, S.L. Epitaxial Bain Paths and Metastable Phases from First-Principles Total-Energy Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 66, 641111–641118. [Google Scholar] [CrossRef]
- Mishin, Y.; Mehl, M.J.; Papaconstantopoulos, D.A.; Voter, A.F.; Kress, J.D. Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 2241061–22410616. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Lu, S.H.; Li, Y.S.; Jona, F.; Marcus, P.M. Epitaxial Growth of a Metastable Modification of Copper with Body-Centered-Cubic Structure. Phys. Rev. B 1987, 35, 9322–9325. [Google Scholar] [CrossRef] [PubMed]
- Morrison, I.A.; Kang, M.H.; Mele, E.J. First-Principles Determination of the Bulk Phase Diagram for Body-Centered-Tetragonal Copper: Application to Epitaxial Growth of Cu on Fe{100}. Phys. Rev. B 1989, 39, 1575–1580. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation Hardening. Metall. Trans. A 1985, 16, 2131–2165. [Google Scholar] [CrossRef]
- Mitchell, T.E.; Lu, Y.C.; Griffin, A.J.; Nastasi, M.; Kung, H. Structure and Mechanical Properties of Copper/Niobium Multilayers. J. Am. Ceram. Soc. 1997, 80, 1673–1676. [Google Scholar] [CrossRef]
- Kung, H.; Lu, Y.C.; Griffin, A.J.; Nastasi, M.; Mitchell, T.E.; Embury, J.D. Observation of Body Centered Cubic Cu in Cu/Nb Nanolayered Composites. Appl. Phys. Lett. 1997, 71, 2103–2105. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.C.; Quinn, J.; Li, Y.S.; Tian, D.; Jona, F. Electronic Properties of Body-Centred-Tetragonal Copper. J. Physics. Condens. Matter 1991, 3, 7193–7198. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.C.; Tian, D.; Quinn, J.; Li, Y.S.; Jona, F.; Marcus, P.M. Epitaxial Growth of Body-Centered-Tetragonal Copper. Phys. Rev. B 1989, 40, 5841–5844. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, D.; Quinn, J.; Li, Y.S.; Jona, F. Low-Energy Electron Diffraction and Photoemission Study of Epitaxial Films of Cu on Ag{001}. Phys. Rev. B 1991, 43, 6342–6346. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.G.; Šob, M. Structural Stability of Higher-Energy Phases and Its Relation to the Atomic Configurations of Extended Defects: The Example of Cu. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 60, 844–850. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.C.; Svendsen, B.; Raabe, D. Competitive Bcc and Fcc Crystal Nucleation from Non-Equilibrium Liquids Studied by Phase-Field Crystal Simulation. Acta Mater. 2017, 139, 196–204. [Google Scholar] [CrossRef]
- Kolluri, K.; Gungor, M.R.; Maroudas, D. Molecular Dynamics Simulations of Martensitic Fcc-to-Hcp Phase Transformations in Strained Ultrathin Metallic Films. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 195408. [Google Scholar] [CrossRef]
- Jona, F.; Ji, Z.; Marcus, M. Hexagonal Close-Packed Copper: Theory and Experiment. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 172101. [Google Scholar] [CrossRef]
- Hrubiak, R.; Sinogeikin, S.; Rod, E.; Shen, G. The Laser Micro-Machining System for Diamond Anvil Cell Experiments and General Precision Machining Applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum. 2015, 86, 072202. [Google Scholar] [CrossRef]
- Park, C.; Popov, D.; Ikuta, D.; Lin, C.; Kenney-Benson, C.; Rod, E.; Bommananvar, A.; Shen, G. New Developments in Micro-X-ray Diffraction and X-ray Absorption Spectroscopy for High-Pressure Research at 16-BM-D at the Advanced Photon Source. Rev. Sci. Instrum. 2015, 86, 072205. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.S.; Sinogeikin, S.V.; Lin, C.; Rod, E.; Bai, L.; Shen, G. Developments in Time-Resolved High Pressure x-Ray Diffraction Using Rapid Compression and Decompression. Rev. Sci. Instrum. 2015, 86, 072208. [Google Scholar] [CrossRef] [Green Version]
- Popov, D.; Velisavljevic, N.; Somayazulu, M. Mechanisms of Pressure-Induced Phase Transitions by Real-Time Laue Diffraction. Crystals 2019, 9, 672. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the Ruby Pressure Gauge to 800 Kbar under Quasi-Hydrostatic Conditions. J. Geophys. Res. 1986, 91, 4673. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A Program for Reduction of Two-Dimensional X-ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Häusermann, D. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Press. Res. 1996, 14, 235–248. [Google Scholar] [CrossRef]
- Subramanian, P.R. Phase Diagrams of Binary Copper Alloys; ASM International: Materials Park, OH, USA, 1994; Volume 10, ISBN 0871704846. [Google Scholar]
- Kurz, W.; Fisher, D. Fundamentals of Solidification. 1; Trans Tech Publications: Aedermannsdorf, Switzerland, 1989. [Google Scholar]
- Griffith, M.L.; Schlieriger, M.E.; Harwell, L.D.; Oliver, M.S.; Baldwin, M.D.; Ensz, M.T.; Essien, M.; Brooks, J.; Robino, C.V.; Smugeresky, J.E.; et al. Understanding Thermal Behavior in the LENS Process. Mater. Des. 1999, 20, 107–113. [Google Scholar] [CrossRef]
- Milstein, F.; Farber, B. Theoretical Fcc→bcc Transition under [100] Tensile Loading. Phys. Rev. Lett. 1980, 44, 277–280. [Google Scholar] [CrossRef]
- Jahnátek, M.; Hafner, J.; Krajčí, M. Shear Deformation, Ideal Strength, and Stacking Fault Formation of Fcc Metals: A Density-Functional Study of Al and Cu. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 224103. [Google Scholar] [CrossRef]
- Wen, Y.F.; Sun, J. Structural Stability of Higher-Energy Phases in Cu and Cu-Fe Alloy Revealed by Ab Initio Calculations. Comput. Mater. Sci. 2013, 79, 463–467. [Google Scholar] [CrossRef]
- Neogi, A.; Mitra, N. A Metastable Phase of Shocked Bulk Single Crystal Copper: An Atomistic Simulation Study. Sci. Rep. 2017, 7, 7337. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Ouyang, W.; Ren, J.; Mi, L.; Guo, W. Fcc→bcc→hcp Successive Phase Transformations in the Strained Ultrathin Copper Film: A Molecular Dynamic Simulation Study. Mater. Chem. Phys. 2019, 223, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Othen, P.J.; Jenkins, M.L.; Smith, G.D.W.; Phythianj, W.J. Transmission Electron Microscope Investigations of the Structure of Copper Precipitates in Thermally-Aged Fe-Cu and Fe-Cu-Ni. Philos. Mag. Lett. 1991, 64, 383–391. [Google Scholar] [CrossRef]
- Othen, P.J.; Jenkins, M.L.; Smith, G.D.W. High-Resolution Electron Microscopy Studies of the Structure of Cu Precipitates in α-Fe. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1994, 70, C1–C24. [Google Scholar] [CrossRef]
- Demange, G.; Lavrskyi, M.; Chen, K.; Chen, X.; Wang, Z.D.; Patte, R.; Zapolsky, H. Atomistic Study of the Fcc → Bcc Transformation in a Binary System: Insights from the Quasi-Particle Approach. Acta Mater. 2022, 226, 117599. [Google Scholar] [CrossRef]
- Li, C.H.; Porter, D.A.; Easterling, K.E.; Smith, D.J. A Lattice Resolution Study of the Martensitic Transformation of Small Iron Particles in a Copper Matrix. Acta Metall. 1985, 33, 317–328. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, A.; Popov, D.; Velisavljevic, N.; Misra, A. Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure. Nanomaterials 2022, 12, 1514. https://doi.org/10.3390/nano12091514
Chatterjee A, Popov D, Velisavljevic N, Misra A. Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure. Nanomaterials. 2022; 12(9):1514. https://doi.org/10.3390/nano12091514
Chicago/Turabian StyleChatterjee, Arya, Dmitry Popov, Nenad Velisavljevic, and Amit Misra. 2022. "Phase Transitions of Cu and Fe at Multiscales in an Additively Manufactured Cu–Fe Alloy under High-Pressure" Nanomaterials 12, no. 9: 1514. https://doi.org/10.3390/nano12091514