Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Reagents
2.2. Apparatus and Equipment
2.3. Nickel Nanoparticle Synthesis
2.4. Functionalization of MWCNTs
2.5. Fabrication of NiPcMWCNTs Nanocomposites
2.6. Electrode Modification Procedure
2.7. Characterization of Fabricated Nanomaterials
2.8. Electrochemical and Impedance Studies
3. Results and Discussion
3.1. X-ray Diffraction XRD Characterization
3.2. Energy Dispersive X-ray EDX Analysis
3.3. Ultraviolet–Visible Characterization
3.4. Transmission Electron Microscopy TEM Characterization
3.5. Scanning Electron Microscopy SEM Characterization
3.6. Electrochemical Characterization of Bare and Modified Electrodes
3.6.1. Scan Rate Study
3.6.2. Stability Study
3.7. Impedance Spectroscopy Studies of Bare and Modified Electrodes
3.7.1. EIS of Modified Electrodes in 0.1 M KBrO3 Prepared in 0.1 M PBS
3.7.2. EIS of Modified Electrodes in 0.1 M KBrO3 Prepared in 0.1 M H2SO4
3.7.3. EIS of Modified Electrodes in 0.1 M KBrO3 Prepared in 0.1 M Na2SO4
3.7.4. EIS of Modified Electrodes in 0.1 M KBrO3 Prepared in 0.1 M SAB (pH 7)
3.7.5. Comparison of EIS Results of GCE-NiPcMWCNTs-Modified Electrode in Different Electrolytes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gopi, C.V.M.; Vinodh, R.; Sambasivam, S.; Obaidat, I.; Kim, H.-j. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. J. Energy Storage 2020, 27, 101035. [Google Scholar]
- Adekunle, A.S.; Ozoemena, K.I.; Mamba, B.B.; Agboola, B. Supercapacitive properties of symmetry and the asymmetry two electrode coin type supercapacitor cells made from MWCNTS/nickel oxide nanocomposite. Int. J. Electrochem. Sci. 2011, 6, 4760–4774. [Google Scholar]
- Adekunle, A.S.; Ozoemena, K.I.; Agboola, B.O. MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media. J. Solid State Electrochem. 2013, 17, 1311–13204. [Google Scholar] [CrossRef]
- Portet, C.; Taberna, P.L.; Simon, P.; Flahaut, E. Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J. Power Sources 2005, 139, 371–378. [Google Scholar] [CrossRef]
- Vicentini, R.; Nunes, W.G.; da Costa, L.H.; da Silva, L.M.; Freitas, B.; Pascon, A.M.; Vilas-Boas, O.; Zanina, H. Multiwalled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors. J. Energy Storage 2021, 33, 100738. [Google Scholar] [CrossRef]
- Liu, X.; Xue, L.; Lu, Y.; Xia, Y.; Li, Q. Fabrication of polypyrrole/multiwalled carbon nanotubes composites as high performance electrodes for supercapacitors. J. Electroanal. Chem. 2020, 862, 114006. [Google Scholar] [CrossRef]
- Koyun, O.; Gorduk, S.; Gencten, M.; Sahin, Y. A novel copper (ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New J. Chem. 2019, 43, 85–92. [Google Scholar] [CrossRef]
- De La Torre, G.; Vázquez, P.; Agulló-López, F.; Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 2004, 104, 3723–3750. [Google Scholar] [CrossRef]
- Campidelli, S.; Ballesteros, B.; Filoramo, A.; Díaz, D.D.; de la Torre, G.; Torres, T.; Rahman, G.M.A.; Ehli, C.; Kiessling, D.; Werner, F.; et al. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”. J. Am. Chem. Soc. 2008, 130, 11503–11509. [Google Scholar] [CrossRef]
- Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742. [Google Scholar] [CrossRef]
- Saka, E.T.; Biyiklioglu, Z. Co (II) and Fe (II) phthalocyanines: Synthesis, investigation of their catalytic activity towards phenolic compounds and electrochemical behaviour. Appl. Organomet. Chem. 2015, 29, 392–399. [Google Scholar] [CrossRef]
- Sakamoto, K.; Okumura, E.; Hirohashi, R. Phthalocyanine as Functional Dyes; IPC: Tokyo, Japan, 2004; p. 2. [Google Scholar]
- Claessens, C.G.; Hahn, U.; Torres, T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec. 2008, 8, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Josse, F.; Göpel, W.; Öztürk, Z.Z.; Bekaroğlu, Ö. Phthalocyanines as sensitive materials for chemical sensors. Appl. Organomet. Chem. 1996, 10, 557–577. [Google Scholar] [CrossRef]
- Hassan, S.A.; Zahran, A.A.; Yehia, F.Z. A supported nickel phthalocyanine complex as a selective catalyst for the production of styrene. Adsorpt. Sci. Technol. 2002, 20, 269–283. [Google Scholar] [CrossRef]
- Béguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Adv. Mater. 2005, 17, 2380–2384. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Wang, X.; Chen, Z.; He, C. Copper phthalocyanine noncovalent functionalized single-walled carbon nanotube with enhanced NH3 sensing performance. Sens. Actuators B Chem. 2014, 190, 157–164. [Google Scholar] [CrossRef]
- Sakamoto, K.; Ohno-Okumura, E. Syntheses and functional properties of phthalocyanines. Materials 2009, 2, 1127–1179. [Google Scholar] [CrossRef] [Green Version]
- Madhuri, K.P.; John, N.S. Supercapacitor application of nickel phthalocyanine nanofibres and its composite with reduced graphene oxide. Appl. Surf. Sci. 2018, 449, 528–536. [Google Scholar] [CrossRef]
- Gorduk, O.; Gencten, M.; Gorduk, S.; Sahin, M.; Sahin, Y. Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. J. Energy Storage 2021, 33, 102049. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M.; Gleason, K.K. Device fabrication based on oxidative chemical vapor deposition (oCVD) synthesis of conducting polymers and related conjugated organic materials. Adv. Mater. Interfaces 2019, 6, 1801564. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Lopez-Beltran, H.; Siu, C.; Skorenko, K.H.; Zhou, H.; Bernier, W.E.; Whittingham, M.S.; Jones, W.E., Jr. Vaper phase polymerized PEDOT/cellulose paper composite for flexible solid-state supercapacitor. ACS Appl. Energy Mater. 2020, 3, 1559–1568. [Google Scholar] [CrossRef]
- Wu, X.; Xing, W.; Zhang, L.; Zhuo, S.; Zhou, J.; Wang, G.; Qiao, S. Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. Powder Technol. 2012, 224, 162–167. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Lee, H.J.; Jang, A. Amperometric bromate-sensitive sensor via layer-by-layer assembling of metalloporphyrin and polyelectrolytes on carbon nanotubes modified surfaces. Sens. Actuators B Chem. 2017, 244, 157–166. [Google Scholar] [CrossRef]
- Mphuthi, N.G.; Adekunle, A.S.; Fayemi, O.E.; Olasunkanmi, L.O.; Ebenso, E.E. Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine. Sci. Rep. 2017, 7, 43181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eluri, R.; Paul, B. Synthesis of nickel nanoparticles by hydrazine reduction: Mechanistic study and continuous flow synthesis. J. Nanoparticle Res. 2012, 14, 800. [Google Scholar] [CrossRef]
- Wu, Z.G.; Munoz, M.; Montero, O. The synthesis of nickel nanoparticles by hydrazine reduction. Adv. Powder Technol. 2010, 21, 165–168. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Li, H.; Xu, Z.; Li, K.; Hou, X.; Cao, G.; Zhang, Q.; Cao, Z. Modification of multiwalled carbon nanotubes with cobalt phthalocyanine: Effects of the templates on the assemblies. J. Mater. Chem. 2011, 21, 1181–1186. [Google Scholar] [CrossRef]
- Cao, L.; Chen, H.-Z.; Li, H.-Y.; Zhou, H.-B.; Sun, J.-Z.; Zhang, X.-B.; Wang, M. Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chem. Mater. 2003, 15, 3247–3249. [Google Scholar] [CrossRef]
- Chidembo, A.T. Nickel (II) Phthalocyanine-Multi-Walled Carbon Nanotube Hybrids as Supercapacitors. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2010. [Google Scholar]
- Haque, F.; Rahman, M.S.; Ahmed, E.; Bakshi, P.K.; Shaikh, A.A. A cyclic voltammetric study of the redox reaction of Cu (II) in presence of ascorbic acid in different pH media. Dhaka Univ. J. Sci. 2013, 61, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Zangeneh Kamali, K.; Alagarsamy, P.; Huang, N.M.; Ong, B.H.; Lim, H.N. Hematite nanoparticles-modified electrode based electrochemical sensing platform for dopamine. Sci. World J. 2014, 2014, 396135. [Google Scholar] [CrossRef]
- Du, C.; Pan, N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 2006, 160, 1487–1494. [Google Scholar] [CrossRef]
- Huang, C.-W.; Wu, Y.-T.; Hu, C.-C.; Li, Y.-Y. Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors. J. Power Sources 2007, 172, 460–467. [Google Scholar] [CrossRef]
Working Electrodes | Ipa (μA) | Ipc (μA) | Ipa/Ipc | Epa (V) | Epc (V) | ΔEp (V) | E° (V) | Cp (F/g) |
---|---|---|---|---|---|---|---|---|
Bare GCE | 25.0 | −30.0 | −0.83 | 0.40 | 0.01 | 0.39 | 0.20 | 0.17 |
GCE-Pc | 21.5 | −25.9 | −0.83 | 0.26 | 0.01 | 0.25 | 0.13 | 0.26 |
GCE-Ni | 35.6 | −41.3 | −0.86 | 0.31 | 0.13 | 0.18 | 0.09 | 0.31 |
GCE-fMWCNTs | 58.0 | −67.1 | −0.87 | 0.29 | 0.16 | 0.13 | 0.07 | 0.63 |
GCE-NiPcMWCNTs | 457.0 | −482.0 | −0.95 | 0.31 | 0.13 | 0.18 | 0.09 | 6.80 |
Impedance Spectroscopy Data | ||||||||
---|---|---|---|---|---|---|---|---|
Electrolyte | Electrode | Rs (Ω) | CPE (μF) | Rct (kΩ) | W (μF) | N | X2 | f° |
PBS | GCE | 100 (2.73) | 1.65 (6.09) | 44.9 (9.92) | 9.24 (5.44) | 0.82 (0.95) | 0.229 | 0.95 |
Pc | 174 (10.0) | 4.85 (3.06) | 428.2 (10.0) | 37.6 (111) | 0.49 (0.88) | 0.137 | 0.72 | |
Ni | 102 (1.60) | 3.72 (3.96) | 54.6 (9.50) | 12.4 (6.51) | 0.84 (0.70) | 0.126 | 0.95 | |
fMWCNTs | 93 (1.68) | 8.08 (6.53) | 7.95 (6.94) | 82.6 (5.65) | 0.89 (1.16) | 0.200 | 1.27 | |
NiPcMWCNTs | 105 (2.20) | 43.4 (10.65) | 1.98 (7.21) | 407 (5.98) | 0.63 (2.38) | 0.164 | 2.22 | |
H2SO4 | GCE | 35.3 (4.48) | 0.55 (6.49) | 13.4 (3.21) | 36.7 (3.96) | 0.87 (0.80) | 0.216 | 5.18 |
Pc | 57.1 (1.56) | 11.0 (5.33) | 6.6 (5.89) | 120 (5.06) | 0.85 (0.94) | 0.141 | 1.27 | |
Ni | 40.3 (2.15) | 3.75 (6.27) | 7.7 (6.35) | 47.6 (3.95) | 0.88 (0.93) | 0.188 | 2.95 | |
fMWCNTs | 36.0 (2.08) | 33.3 (13.4) | 2.4 (38.09) | 78.6 (5.48) | 0.84 (2.29) | 0.247 | 9.10 | |
NiPcMWCNTs | 39.9 (2.95) | 42.0 (53.2) | 0.06 (9.53) | 3130 (3.96) | 0.79 (8.22) | 0.320 | 21.2 | |
Na2SO4 | GCE | 81.5 (2.50) | 1.51 (7.70) | 17.3 (8.65) | 18.0 (4.57) | 0.91 (1.10) | 0.281 | 1.68 |
Pc | 87.8 (1.62) | 5.87 (5.29) | 10.1 (4.85) | 80.2 (5.53) | 0.85 (0.91) | 0.149 | 1.27 | |
Ni | 71.0 (1.59) | 2.25 (6.71) | 7.1 (8.11) | 23.3 (2.36) | 0.90 (0.94) | 0.114 | 5.18 | |
fMWCNTs | 40.2 (1.86) | 16.2 (9.27) | 0.69 (2.45) | 8594 (23.9) | 0.88 (1.51) | 0.211 | 0.72 | |
NiPcMWCNTs | 64.0 (5.29) | 49.6 (9.2) | 0.61 (10.8) | 1060 (9.63) | 0.65 (5.92) | 0.071 | 6.87 | |
SAB | GCE | 132 (1.42) | 1.55 (9.02) | 6.35 (12.0) | 15.7 (1.96) | 0.92 (1.28) | 0.102 | 0.54 |
Pc | 144 (1.13) | 3.93 (6.26) | 9.09 (10.1) | 22.5 (2.39) | 0.89 (0.99) | 0.080 | 0.95 | |
Ni | 120 (2.14) | 0.85 (7.00) | 11.1 (4.26) | 24.8 (2.76) | 0.87 (0.95) | 0.150 | 1.27 | |
fMWCNTs | 65 (1.71) | 6.87 (7.11) | 2.19 (2.47) | 1465 (13.0) | 0.91 (1.14) | 0.188 | 0.54 | |
NiPcMWCNTs | 91 (2.50) | 306 (11.5) | 0.36 (5.12) | 714 (5.70) | 0.50 (3.68) | 0.192 | 1.68 |
Impedance Spectroscopy Data | |||||||
---|---|---|---|---|---|---|---|
Electrolytes | Rs (Ω) | CPE (μF) | Rct (kΩ) | W (μF) | n | X2 | f° |
PBS | 105 (2.20) | 43.4 (10.65) | 1.98 (7.21) | 407 (5.98) | 0.63 (2.38) | 0.164 | 2.22 |
H2SO4 | 39.9 (2.95) | 42.0 (53.2) | 0.06 (9.53) | 3130 (3.96) | 0.79 (8.22) | 0.320 | 21.2 |
Na2SO4 | 62.6 (1.96) | 17.8 (8.06) | 9.04 (21.8) | 37.5 (5.88) | 0.78 (1.49) | 0.186 | 6.87 |
SAB | 91 (2.50) | 306 (11.5) | 0.36 (5.12) | 714 (5.70) | 0.50 (3.68) | 0.192 | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogun, S.A.; Fayemi, O.E. Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode. Nanomaterials 2022, 12, 1876. https://doi.org/10.3390/nano12111876
Balogun SA, Fayemi OE. Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode. Nanomaterials. 2022; 12(11):1876. https://doi.org/10.3390/nano12111876
Chicago/Turabian StyleBalogun, Sheriff A., and Omolola E. Fayemi. 2022. "Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode" Nanomaterials 12, no. 11: 1876. https://doi.org/10.3390/nano12111876
APA StyleBalogun, S. A., & Fayemi, O. E. (2022). Effects of Electrolytes on the Electrochemical Impedance Properties of NiPcMWCNTs-Modified Glassy Carbon Electrode. Nanomaterials, 12(11), 1876. https://doi.org/10.3390/nano12111876