High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication
Abstract
:1. Introduction
2. Experimental
2.1. Pattern Replication via AAO/PMMA Thin Film-Based Depositing Method
2.2. Characterizations
3. Result and Discussion
3.1. Nanostructured Surfaces via AAO Thin Film Replication Process
3.2. Anti-Reflection Properties
3.3. Analysis and Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, W.; Liu, W.; Yang, J.; Xu, C.; Alabastri, A.; Liu, C.; Nordlander, P.; Guan, Z.; Xu, H. Giant photothermoelectric effect in silicon nanoribbon photodetectors. Light Sci. Appl. 2020, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qian, L.; Xie, D.; Lin, Y.; Sun, M.; Li, W.; Ding, L.; Ren, T.; Palacios, T. Photoelectric Synaptic Plasticity Realized by 2D Perovskite. Adv. Funct. Mater. 2019, 29, 1902538. [Google Scholar] [CrossRef]
- Chizhov, A.; Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials 2021, 11, 892. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liu, C.; Asare-Yeboah, K.; Zhang, Z.; He, Z.; Liu, Y. Ultra-high resolution position sensors with self-assembled nanowire arrays. J. Mater. Chem. C 2020, 8, 9954–9959. [Google Scholar] [CrossRef]
- Kattel, S.; Murphy, J.R.; Ellsworth, D.; Ding, J.; Liu, T.; Li, P.; Wu, M.; Rice, W.D. Broadband Optical Detection Using the Spin Seebeck Effect. Phys. Rev. Appl. 2019, 12, 034047. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Bi, W.; Shi, Z.; Zhuang, X.; Song, Z.; Liu, S.; Chen, C.; Xu, L.; Dai, Q.; Song, H. Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu2CdxZn1−xSnS4 for Achieving Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 17509–17518. [Google Scholar] [CrossRef]
- Qiao, F.; Xie, Y.; He, G.; Chu, H.Q.; Liu, W.J.; Chen, Z.Y. Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells. Nanoscale 2020, 12, 1269–1280. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Wang, H.; Tao, Q.; Zhu, Y.; Yang, Y. Full-spectrum absorption enhancement in a-Si:H thin-film solar cell with a composite light-trapping structure. Sol. RRL 2021, 5, 2000524. [Google Scholar] [CrossRef]
- Costa Neta, B.; Da Silva, A.; Brito, J.; Moraes, J.; Rebelo, J.; Silva, F. Light-emitting diode (LED) traps improve the light-trapping of anopheline mosquitoes. J. Med. Entomol. 2017, 54, 1699–1703. [Google Scholar] [CrossRef]
- Li, M.; Yuan, N.; Tang, Y.; Pei, L.; Zhu, Y.; Liu, J.; Bai, L.; Li, M. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles. J. Mater. Sci. Technol. 2019, 35, 604–609. [Google Scholar] [CrossRef]
- Khan, S.B.; Wu, H.; Fei, Z.; Ning, S.; Zhang, Z.J. Antireflective coatings with enhanced adhesion strength. Nanoscale 2017, 9, 11047–11054. [Google Scholar] [CrossRef]
- Luo, X.L.; Lu, L.F.; Yin, M.; Fang, X.H.; Chen, X.Y.; Li, D.D.; Yang, L.Y.; Li, G.F.; Ma, J. Antireflective and self-cleaning glass with robust moth-eye surface nanostructures for photovoltaic utilization. Mater. Res. Bull. 2019, 109, 183–189. [Google Scholar] [CrossRef]
- Li, W.; Lv, F.; Shu, T.; Tan, X.Y.; Jiang, L.H.; Xiao, T.; Xiang, P. Improving the performance of FTO conducting glass by SiO2 and ZnO anti-reflection films for dye-sensitized solar cells. Mater. Lett. 2019, 243, 108–111. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Huang, J.; Fu, W.Y.; Lei, Y.F.; Deng, P.K.; Cai, H.Z.; Liu, J.Y. Low-cost and flexible anti-reflection films constructed from nano multi-layers of TiO2 and SiO2 for perovskite solar cells. IEEE Access 2019, 7, 176394–176403. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, R.; Wu, Y.H.; Cai, H.Z.; Zhang, Y.Q. Improving external quantum efficiency by subwavelength nano multi-layered structures for optoelectronic devices. IEEE Access 2020, 8, 189974–189981. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mai, X.; Wang, T.; Wang, C.; Li, X.; Murugadoss, V.; Shao, Q.; Angaiah, S.; Guo, Z. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J. Colloid Interface Sci. 2019, 534, 459–468. [Google Scholar] [CrossRef]
- Li, H.O.; Cao, L.; Fu, T.; Li, Q.; Zhang, F.B.; Xiao, G.L.; Chen, Y.H.; Liu, X.P.; Zhao, W.N.; Yu, Z.Q.; et al. Morphology-dependent high antireflective surfaces via anodic aluminum oxide nanostructures. Appl. Surf. Sci. 2019, 496, 143697. [Google Scholar] [CrossRef]
- Wan, R.Q.; Li, G.Q.; Gao, X.; Liu, Z.Q.; Li, J.H.; Yi, X.Y.; Chi, N.; Wang, L.C. Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer. Photonics Res. 2021, 9, 1213–1217. [Google Scholar] [CrossRef]
- Wan, R.Q.; Gao, X.; Wang, L.C.; Zhang, S.; Chen, X.B.; Liu, Z.Q.; Yi, X.Y.; Wang, J.X.; Li, J.H.; Zhu, W.H.; et al. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth. Photonics Res. 2020, 8, 1110–1117. [Google Scholar] [CrossRef]
- Han, Z.; Jiao, Z.; Niu, S.; Ren, L. Ascendant Bioinspired Antireflective Materials: Opportunities and Challenges Coexist. Prog. Mater. Sci. 2019, 103, 1–68. [Google Scholar] [CrossRef]
- Yang, Z.; Du, K.; Lu, F.F.; Pang, Y.; Hua, S.J.; Gan, X.T.; Zhang, W.D.; Chua, S.J.; Mei, T. Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector. Photonics Res. 2019, 7, 294–299. [Google Scholar] [CrossRef]
- Takiguchi, M.; Sasaki, S.; Tateno, K.; Chen, E.; Nozaki, K.; Sergent, S.; Kuramochi, E.; Zhang, G.; Shinya, A.; Notomi, M. Hybrid nanowire photodetector integrated in a silicon photonic crystal. Acs Photonics 2020, 7, 5467–5473. [Google Scholar] [CrossRef]
- Sun, T.Y.; Zhao, W.N.; Wu, X.H.; Liu, S.S.; Ma, Z.C.; Peng, J.; He, J.; Xu, H.F.; Liu, S.Y.; Xu, Z.M. Porous light-emitting diodes with patterned sapphire substrates realized by high-voltage self-growth and soft UV nanoimprint processes. J. Lightwave Technol. 2013, 32, 326–332. [Google Scholar] [CrossRef]
- Sun, T.Y.; Liu, Y.; Tu, J.; Zhou, Z.P.; Cao, L.; Liu, X.P.; Li, H.O.; Li, Q.; Fu, T.; Zhang, F.B.; et al. Wafer-scale High Anti-reflective Nano/micro Hybrid Interface Structures Via Aluminum Grain Dependent Self-organization. Mater. Des. 2020, 194, 108960. [Google Scholar] [CrossRef]
- Sun, T.Y.; Xu, Z.M.; Zhao, W.N.; Wu, X.H.; Liu, S.S.; Zhang, Z.; Wang, S.B.; Liu, W.; Liu, S.Y.; Peng, J. Fabrication of the similar porous alumina silicon template for soft UV nanoimprint lithography. Appl. Surf. Sci. 2013, 276, 363–368. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a 2-STEP replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Sun, T.Y.; Tu, J.; Cao, L.; Fu, T.; Li, Q.; Zhang, F.B.; Xiao, G.L.; Chen, Y.H.; Li, H.O.; Liu, X.P.; et al. Sidewall profile dependent nanostructured ultrathin solar cells with enhanced light trapping capabilities. IEEE Photonics J. 2020, 12, 8400112. [Google Scholar] [CrossRef]
- Sun, T.Y.; Shi, H.; Cao, L.; Liu, Y.; Tu, J.; Lu, M.J.; Li, H.; Zhao, W.N.; Li, Q.; Fu, T.; et al. Double grating high efficiency nanostructured silicon-based ultra-thin solar cells. Results Phys. 2020, 19, 103442. [Google Scholar] [CrossRef]
- Nair, A.T.; Palappra, S.P.; Reddy, V.S. Influence of Ag nanostructure location on the absorption enhancement in polymer solar cells. ACS Appl. Mater. Interfaces 2018, 10, 32483–32491. [Google Scholar] [CrossRef]
- Fang, X.G.; Zheng, C.X.; Yin, Z.; Wang, Z.M.; Wang, J.W.; Liu, J.X.; Luo, D.; Liu, Y.J. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Appl. Mater. Interfaces 2020, 12, 12345–12352. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Q.; Wattanatorn, N.; Zhao, C.; Chiang, N.; Jonas, S.J.; Weiss, P.S. Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. Acs Nano 2017, 11, 10384–10391. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Ning, S.; Ross, C.A. Self-assembled multiferroic perovskite-spinel nanocomposite thin films: Epitaxial growth, templating and integration on silicon. J. Mater. Chem. C 2019, 7, 9128–9148. [Google Scholar] [CrossRef]
- Tsai, J.K.; Tu, Y.S. Fabrication of polymeric antireflection film manufactured by anodic aluminum oxide template on dye-sensitized solar cells. Materials 2017, 10, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudem, B.; Leem, J.W.; Yu, J.S. A multifunctional hierarchical nano/micro-structured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask. RSC Adv. 2016, 6, 3764–3773. [Google Scholar] [CrossRef]
- Hsu, C.H.; Liu, S.M.; Wu, W.Y.; Cho, Y.S.; Huang, P.H.; Huang, C.J.; Lien, S.Y.; Zhu, W.Z. Nanostructured pyramidal black silicon with ultra-low reflectance and high passivation. Arab. J. Chem. 2020, 13, 8239–8247. [Google Scholar] [CrossRef]
- Jasim, I.; Liu, J.; Zhu, C.; Roman, M.; Huang, J.; Kinzel, E.; Almasri, M. Microsphere Photolithography Patterned Nanohole Array on an Optical Fiber. IEEE Access 2021, 9, 32627–32633. [Google Scholar] [CrossRef]
- Lin, Q.F.; Lu, L.F.; Tavakoli, M.M.; Zhang, C.; Lui, G.C.; Chen, Z.; Chen, X.Y.; Tang, L.; Zhang, D.Q.; Lin, Y.J.; et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy 2016, 22, 539–547. [Google Scholar] [CrossRef]
- Zheng, X.; Jiang, R.; Qu, X.P.; Li, Q.; Zeng, F.N.; Wang, W.Z.; Dai, Z.W.; Xu, Z.H.; Peng, J.; Xu, Z.M. Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes. Nanotechnology 2020, 31, 195301. [Google Scholar] [CrossRef]
- Li, Z.P.; Xu, Z.M.; Qu, X.P.; Wang, S.B.; Peng, J.; Mei, L.H. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks. Nanotechnology 2017, 28, 095301. [Google Scholar] [CrossRef]
- Fang, W.R.; Hu, P.; Wu, Z.Q.; Xiao, Y.F.; Sui, Y.X.; Pan, D.L.; Su, G.X.; Zhu, M.W.; Zhan, P.; Liu, F.X.; et al. Plasmonic dye-sensitized solar cells through collapsible gold nanofingers. Nanotechnology 2021, 32, 355301. [Google Scholar] [CrossRef]
- Guo, M.; Su, H.J.; Zhang, J.; Liu, L.; Fu, N.Q.; Yong, Z.H.; Huang, H.T.; Xie, K.Y. Broadband and omnidirectional light harvesting enhancement in photovoltaic devices with aperiodic TiO2 nanotube photonic crystal. J. Power Sources 2017, 345, 12–20. [Google Scholar] [CrossRef]
- Zhao, S.X.; Gao, F.; Wang, Y.N.; Bogaerts, A. Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma. Plasma Sources Sci. Technol. 2013, 22, 015017. [Google Scholar] [CrossRef]
- Pan, J.; Li, L.; Chen, B.; Song, Y.Z.; Zhao, Y.F.; Xiu, X.W. Numerical simulation of evolution features of the atmospheric-pressure CF4 plasma generated by the pulsed dielectric barrier discharge. Eur. Phys. J. D 2016, 70, 1–8. [Google Scholar] [CrossRef]
- Cerchiara, R.R.; Fischione, P.E.; Gronsky, J.J.; Matesa, J.M.; Robins, A.C.; Smith, D.W.; Rozeveld, S.J.; Wood, C.; Beach, E.; Waeterloos, J. Automated sample preparation of low-k dielectrics for FESEM. Microsc. Microanal. 2005, 11, 2108–2109. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, E.G.; Molochnikov, L.S.; Tambasova, D.; Marek, A.; Chestnut, M.; Osipova, V.A.; Antonov, D.O.; Kirilyuk, I.A.; Smirnov, A.I. Electrostatic properties of inner nanopore surfaces of anodic aluminum oxide membranes upon high temperature annealing revealed by EPR of pH-sensitive spin probes and labels. J. Membr. Sci. 2020, 604, 118084. [Google Scholar] [CrossRef]
- Scisco, G.P.; Haynes, K.; Jones, K.S.; Ziegler, K.J. Single step bonding of thick anodized aluminum oxide templates to silicon wafers for enhanced system-on-a-chip performance. J. Power Sources 2020, 474, 228643. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, M.; Zhao, H.; Lei, Y. Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion. Nanotechnology 2021, 32, 502006. [Google Scholar] [CrossRef]
- Qian, C.; Lin, X.; Yang, Y.; Gao, F.; Shen, Y.C.; Lopez, J.; Kaminer, I.; Zhang, B.L.; Li, E.P.; Soljacic, M.; et al. Multifrequency superscattering from subwavelength hyperbolic structures. ACS Photonics 2018, 5, 1506–1511. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, B.; Adamo, G.; Cortecchia, D.; Krishnamoorthy, H.N.S.; Birowosuto, M.D.; Zheludev, N.I.; Soci, C. Organometallic perovskite metasurfaces. Adv. Mater. 2017, 29, 1604268. [Google Scholar] [CrossRef]
- Morawiec, S.; Mendes, M.; Priolo, F.; Crupi, I. Plasmonic nanostructures for light trapping in thin-film solar cells. Mater. Sci. Semicond. Process. 2019, 92, 10–18. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Pickering, T.; Shanks, K.; Sundaram, S. Modelling technique and analysis of porous anti-reflective coatings for reducing wide angle reflectance of thin-film solar cells. J. Opt. 2021, 23, 025901. [Google Scholar] [CrossRef]
- Chen, J.H.; Shen, Y.J.; Chen, B.B.; Ge, K.P.; Guo, J.X.; Wang, Z.Q.; Li, F.; Xu, Y.; Mai, Y.H. Polymer thin films for anti-reflection and passivation on the front surface of Interdigitated back contact c-Si solar cell. Sol. RRL 2017, 1, 1700079. [Google Scholar] [CrossRef]
- Krishna, J.V.; Reddy, G.; Devulapally, K.; Islavath, N.; Giribabu, L. Solution processed aligned ZnO nanowires as anti-reflection and electron transport layer in organic dye-sensitized solar cells. Opt. Mater. 2019, 95, 109243. [Google Scholar] [CrossRef]
- Yang, Z.H.; Shang, A.; Qin, L.L.; Zhan, Y.H.; Zhang, C.; Gao, P.Q.; Ye, J.C.; Li, X.F. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres. Opt. Lett. 2016, 41, 1329–1332. [Google Scholar] [CrossRef]
- Bozzola, A.; Liscidini, M.; Andreani, L.C. Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt. Express 2012, 20, A224–A244. [Google Scholar] [CrossRef] [Green Version]
- Han, S.E.; Chen, G. Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett. 2010, 10, 4692–4696. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Shui, F.; Yang, X.; Zhou, Z.; Wan, R.; Liu, Y.; Qian, C.; Xu, Z.; Li, H.; Guo, W. High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication. Nanomaterials 2022, 12, 1875. https://doi.org/10.3390/nano12111875
Sun T, Shui F, Yang X, Zhou Z, Wan R, Liu Y, Qian C, Xu Z, Li H, Guo W. High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication. Nanomaterials. 2022; 12(11):1875. https://doi.org/10.3390/nano12111875
Chicago/Turabian StyleSun, Tangyou, Furong Shui, Xiancui Yang, Zhiping Zhou, Rongqiao Wan, Yun Liu, Cheng Qian, Zhimou Xu, Haiou Li, and Wenjing Guo. 2022. "High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication" Nanomaterials 12, no. 11: 1875. https://doi.org/10.3390/nano12111875
APA StyleSun, T., Shui, F., Yang, X., Zhou, Z., Wan, R., Liu, Y., Qian, C., Xu, Z., Li, H., & Guo, W. (2022). High Anti-Reflection Large-Scale Cup-Shaped Nano-Pillar Arrays via Thin Film Anodic Aluminum Oxide Replication. Nanomaterials, 12(11), 1875. https://doi.org/10.3390/nano12111875