High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LiV3O8
2.2. Material Characterizations
2.3. Electrochemical Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karden, E.; Ploumen, S.; Fricke, B.; Miller, T.; Snyder, K. Energy storage devices for future hybrid electric vehicles. J. Power Sources 2007, 168, 2–11. [Google Scholar] [CrossRef]
- Tran, M.K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives. World Electr. Veh. J. 2021, 12, 54. [Google Scholar] [CrossRef]
- Panchal, S. Experimental Investigation and Modeling of Lithium-Ion Battery Cells and Packs for Electric Vehicles. Ph.D. Thesis, University of Ontario Institute of Technology, Oshawa, ON, Canada, 2016. [Google Scholar]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Akhoundzadeh, M.H.; Panchal, S.; Samadani, E.; Raahemifar, K.; Fowler, M.; Fraser, R. Investigation and simulation of electric train utilizing hydrogen fuel cell and lithium-ion battery. Sustain. Energy Technol. Assess. 2021, 46, 101234. [Google Scholar]
- Panchal, S. Impact of Vehicle Charge and Discharge Cycles on the Thermal Characteristics of Lithium-ion Batteries. Master’s Thesis, University of Waterloo, Waterloo, IA, Canada, 2014. [Google Scholar]
- Xu, C.J.; Li, B.H.; Du, H.D.; Kang, F.Y. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. Engl. 2012, 51, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.Y.; Shan, L.T.; Liang, S.Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Wu, B.K.; Zhang, G.B.; Yan, M.Y.; Xiong, T.F.; He, P.; He, L.; Xu, X. Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14, 1703850. [Google Scholar] [CrossRef]
- Jiang, B.Z.; Xu, C.J.; Wu, C.L.; Dong, L.B.; Li, J.; Kang, F.Y. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Batteries with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.Y.; Liu, Y.C.; Zhao, Q.; Lei, K.X.; Chen, C.C.; Liu, X.S.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Batteries. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef]
- Kundu, D.; Adams, B.D.; Duffort, V.; Vajargah, S.H.; Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119. [Google Scholar] [CrossRef]
- Pang, Q.; Sun, C.L.; Yu, Y.H.; Zhao, K.N.; Zhang, Z.Y.; Voyles, P.M.; Chen, G.; Wei, Y.J.; Wang, X.D. H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Adv. Energy Mater. 2018, 8, 1800144. [Google Scholar] [CrossRef]
- Pang, Q.; He, W.; Zhao, H.N.; Yu, X.Y.; Wei, Y.J.; Tian, Y.; Xing, M.M.; Fu, Y.; Luo, X.X. Hierarchical Aluminum Vanadate Microspheres with Structural Water: High-Performance Cathode Materials for Aqueous Rechargeable Zinc Batteries. ChemElectroChem 2020, 85, 2129–2135. [Google Scholar]
- Liu, X.Y.; Ma, L.W.; Du, Y.H.; Lu, Q.Q.; Yang, A.K.; Wang, X.Y. Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials 2021, 11, 1054. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhu, T.; Wang, X.P.; Zhou, X.F.; Wei, X.J.; Yao, X.H.; Luo, W.; Shi, C.W.; Owusu, K.A.; Zhou, L.; et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019, 58, 492–498. [Google Scholar] [CrossRef]
- Wang, F.; Hu, E.Y.; Sun, W.; Gao, T.; Ji, X.; Fan, X.L.; Han, F.D.; Yang, X.Q.; Xu, K.; Wang, C.S. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 2018, 11, 3168–3175. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Chen, L.; Zhou, X.F.; Liu, Z.P. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930. [Google Scholar] [CrossRef]
- Jia, Z.J.; Wang, B.G.; Wang, Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 2015, 149, 601–606. [Google Scholar] [CrossRef]
- Trócoli, R.; Mantia, F.L. An Aqueous Zinc-Ion Batteries Based on Copper Hexacyanoferrate. ChemSusChem 2015, 8, 481–485. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, W.W.; Luo, Z.Q.; Liu, L.J.; Lu, Y.; Li, Y.X.; Li, L.; Hu, J.Y.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. Chem. Mater. 2018, 30, 3874–3881. [Google Scholar] [CrossRef]
- Gou, Z.W.; Ma, Y.Y.; Dong, X.L.; Huang, J.H.; Wang, Y.G.; Xia, Y.Y. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angew. Chem. Int. Ed. 2018, 57, 11737–11741. [Google Scholar]
- Wang, F.; Niu, Z.Q. Design Strategies of Vanadium-based Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 16358–16367. [Google Scholar]
- Yan, M.Y.; He, P.; Chen, Y.; Wang, S.Y.; Wei, Q.L.; Zhao, K.N.; Xu, X.; An, Q.Y.; Shuang, Y.; Shao, Y.Y.; et al. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2018, 30, 1703725. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Zhang, Y.; Zhang, L.L.; Liu, D.B.; Wang, C.D.; Song, L.; Niu, Z.Q.; Chen, J. Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 7062–7067. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Zhang, L.L.; Dai, X.; Wang, X.Y.; Niu, Z.Q.; Chen, J. Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. Nat. Commun. 2018, 9, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.M.; Li, H.N.; Huang, S.Z.; Fan, S.; Sun, L.G.; Tian, B.B.; Chen, F.M.; Wang, Y.; Shi, Y.M.; Yang, H.Y. Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Lett. 2020, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Ohzuku, T.; Ueda, A. Why transition metal (di)oxides are the most attractive materials for batteries. Solid State Ion. 1994, 69, 201–211. [Google Scholar] [CrossRef]
- He, P.; Yan, M.Y.; Liao, X.B.; Luo, Y.Z.; Mai, L.Q.; Nan, C.W. Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Mater. 2020, 29, 113–120. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Lai, J.W.; Zhu, X.P.; Wang, Y. Green Synthesis of Vanadate Nanobelts at Room Temperature for Superior Aqueous Rechargeable Zinc-Ion Batteries. ACS Appl. Energy Mater. 2018, 11, 6401–6408. [Google Scholar] [CrossRef]
- Liu, C.F.; Neale, Z.; Zheng, J.Q.; Jia, X.X.; Huang, J.J.; Yan, M.Y.; Tian, M.; Wang, M.S.; Yang, J.H.; Cao, G.Z. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 2273–2285. [Google Scholar] [CrossRef]
- Ming, F.W.; Liang, H.F.; Lei, Y.J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H.N. Layered MgxV2O5·nH2O as Cathode Material for High Performance Aqueous Zinc Ion Batteries. ACS Energy Lett. 2018, 10, 2602–2609. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.Y.; Qiu, M.D.; Xu, J.Z.; Liu, Y.C.; Jiao, L.F.; Cheng, F.Y. Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life. ACS Energy Lett. 2018, 3, 1366–1372. [Google Scholar] [CrossRef]
- Alfaruqi, M.H.; Mathew, V.; Song, J.J.; Kim, S.; Islam, S.; Pham, D.T.; Jo, J.; Kim, S.; Baboo, J.P.; Xiu, Z.L.; et al. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chem. Mater. 2017, 29, 1684–1694. [Google Scholar] [CrossRef]
- Pan, Z.H.; Yang, J.; Yang, J.; Zhang, Q.C.; Zhang, H.; Li, X.; Kou, Z.K.; Zhang, Y.F.; Chen, H.; Yan, C.L.; et al. Stitching of Zn3(OH)2V2O7·2H2O 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. ACS Nano 2020, 14, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.X.; Fan, C.L.; Zhang, W.H.; Yi, G.D.; Chen, H.; Han, S.C.; Liu, J.S. Ultra-long cycle life and high-rate performance subglobose Na3V2(PO4)2F3@C cathode and its regulation. Int. J. Energy Res. 2020, 44, 6608–6622. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Z.X.; Fang, G.Z.; Wang, Z.Q.; Cai, Y.S.; Tang, B.; Zhou, J.; Liang, S.Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; He, W.; Yu, X.Y.; Yang, S.Y.; Zhao, H.N.; Fu, Y.; Xing, M.M.; Tian, Y.; Luo, X.X.; Wei, Y.J. Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries. Appl. Surf. Sci. 2021, 538, 14803. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Q.; Yu, X.; Zhang, S.; He, W.; Yang, S.; Fu, Y.; Tian, Y.; Xing, M.; Luo, X. High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte. Nanomaterials 2021, 11, 1429. https://doi.org/10.3390/nano11061429
Pang Q, Yu X, Zhang S, He W, Yang S, Fu Y, Tian Y, Xing M, Luo X. High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte. Nanomaterials. 2021; 11(6):1429. https://doi.org/10.3390/nano11061429
Chicago/Turabian StylePang, Qiang, Xiangyu Yu, Shijing Zhang, Wei He, Siyu Yang, Yao Fu, Ying Tian, Mingming Xing, and Xixian Luo. 2021. "High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte" Nanomaterials 11, no. 6: 1429. https://doi.org/10.3390/nano11061429
APA StylePang, Q., Yu, X., Zhang, S., He, W., Yang, S., Fu, Y., Tian, Y., Xing, M., & Luo, X. (2021). High-Capacity and Long-Lifespan Aqueous LiV3O8/Zn Battery Using Zn/Li Hybrid Electrolyte. Nanomaterials, 11(6), 1429. https://doi.org/10.3390/nano11061429