Studies on the Physical Properties of TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO Three-Layer Structures on Glass and Plastic Substrates as Transparent Conductive Electrodes for Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Loka, C.; Moon, S.W.; Choi, Y.; Lee, K.-S. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate. Electron. Mater. Lett. 2018, 14, 125–132. [Google Scholar] [CrossRef]
- Girtan, M.; Wittenberg, A.; Grilli, M.L.; de Oliveira, D.P.S.; Giosuè, C.; Ruello, M.L. The Critical Raw Materials Issue between Scarcity, Supply Risk, and Unique Properties. Materials 2021, 14, 1826. [Google Scholar] [CrossRef]
- Kim, B.-G.; Kim, J.-Y.; Lee, S.-J.; Park, J.-H.; Lim, D.-G.; Park, M.-G. Structural, Electrical and Optical Properties of Ga-Doped ZnO Films on PET Substrate. Appl. Surf. Sci. 2010, 257, 1063–1067. [Google Scholar] [CrossRef]
- Liu, C.C.; Wu, M.L.; Liu, K.C.; Hsiao, S.-H.; Chen, Y.S.; Lin, G.-R.; Huang, J. Transparent ZnO Thin-Film Transistors on Glass and Plastic Substrates Using Post-Sputtering Oxygen Passivation. J. Disp. Technol. 2009, 5, 192–197. [Google Scholar] [CrossRef]
- Jandow, N.N.; Yam, F.K.; Thahab, S.M.; Ibrahim, K.; Abu Hassan, H. The Characteristics of ZnO Deposited on PPC Plastic Substrate. Mater. Lett. 2010, 64, 2366–2368. [Google Scholar] [CrossRef]
- Banerjee, A.; Ghosh, C.; Chattopadhyay, K.; Minoura, H.; Sarkar, A.; Akiba, A.; Kamiya, A.; Endo, T. Low-Temperature Deposition of ZnO Thin Films on PET and Glass Substrates by DC-Sputtering Technique. Thin Solid Film. 2006, 496, 112–116. [Google Scholar] [CrossRef]
- Girtan, M.; Kompitsas, M.; Mallet, R.; Fasaki, I. On Physical Properties of Undoped and Al and In Doped Zinc Oxide Films Deposited on PET Substrates by Reactive Pulsed Laser Deposition. Eur. Phys. J. Appl. Phys. 2010, 51. [Google Scholar] [CrossRef]
- Girtan, M.; Rusu, G.G.; Dabos-Seignon, S.; Rusu, M. Structural and Electrical Properties of Zinc Oxides Thin Films Prepared by Thermal Oxidation. Appl. Surf. Sci. 2008, 254, 4179–4185. [Google Scholar] [CrossRef][Green Version]
- Rusu, M.; Rusu, G.G.; Girtan, M.; Seignon, S.D. Structural and Optical Properties of ZnO Thin Films Deposited onto ITO/Glass Substrates. J. Non-Cryst. Solids 2008, 354, 4461–4464. [Google Scholar] [CrossRef][Green Version]
- Ghomrani, F.-Z.; Iftimie, S.; Gabouze, N.; Serier, A.; Socol, M.; Stanculescu, A.; Sanchez, F.; Antohe, S.; Girtan, M. Influence of Al Doping Agents Nature on the Physical Properties of Al:ZnO Films Deposited by Spin-Coating Technique. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 247–251. [Google Scholar]
- Girtan, M.; Bouteville, A.; Rusu, G.; Rusu, M. Preparation and Properties of SnO2: F Thin Films. J. Optoelectron. Adv. Mater. 2006, 8, 27–30. [Google Scholar]
- Fortunato, E.; Raniero, L.; Silva, L.; Goncalves, A.; Pimentel, A.; Barquinha, P.; Aguas, H.; Pereira, L.; Goncalves, G.; Ferreira, I.; et al. Highly Stable Transparent and Conducting Gallium-Doped Zinc Oxide Thin Films for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2008, 92, 1605–1610. [Google Scholar] [CrossRef]
- Fortunato, E.; Goncalves, A.; Pimentel, A.; Barquinha, P.; Goncalves, G.; Pereira, L.; Ferreira, I.; Martins, R. Zinc Oxide, a Multifunctional Material: From Material to Device Applications. Appl. Phys. A Mater. Sci. Process. 2009, 96, 197–205. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Breazu, C.; Florica, C.; Costas, A.; Istrate, C.M.; Stanculescu, A.; Girtan, M.; Gherendi, F. Organic Heterostructures Obtained on ZnO/Ag/ZnO Electrode. Vacuum 2018, 154, 366–370. [Google Scholar] [CrossRef]
- Girtan, M. Comparison of ITO/Metal/ITO and ZnO/Metal/ZnO Characteristics as Transparent Electrodes for Third Generation Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 100, 153–161. [Google Scholar] [CrossRef]
- Hrostea, L.; Boclinca, M.; Socol, M.; Leontie, L.; Stanculescu, A.; Girtan, M. Oxide/Metal/Oxide Electrodes for Solar Cell Applications. Sol. Energy 2017, 146, 464–469. [Google Scholar] [CrossRef]
- Girtan, M.; Hrostea, L.; Boclinca, M.; Negulescu, B. Study of Oxide/Metal/Oxide Thin Films for Transparent Electronics and Solar Cells Applications by Spectroscopic Ellipsometry. AIMS Mater. Sci. 2017, 4, 594–613. [Google Scholar] [CrossRef]
- Antohe, S.; Iftimie, S.; Hrostea, L.; Antohe, V.A.; Girtan, M. A Critical Review of Photovoltaic Cells Based on Organic Monomeric and Polymeric Thin Film Heterojunctions. Thin Solid Film. 2017, 642, 219–231. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Breazu, C.; Stanculescu, A.; Costas, A.; Stanculescu, F.; Girtan, M.; Gherendi, F.; Popescu-Pelin, G.; Socol, G. Flexible Organic Heterostructures Obtained by MAPLE. Appl. Phys. A Mater. Sci. Process. 2018, 124, 602. [Google Scholar] [CrossRef]
- Dhar, A.; Alford, T.L. High Quality Transparent TiO2/Ag/TiO2 Composite Electrode Films Deposited on Flexible Substrate at Room Temperature by Sputtering. APL Mater. 2013, 1, 012102. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, D.-H.; Seong, T.-Y. Realization of Highly Transparent and Low Resistance TiO2/Ag/TiO2 Conducting Electrode for Optoelectronic Devices. Ceram. Int. 2015, 41, 3064–3068. [Google Scholar] [CrossRef]
- Ji, L.-W.; Hsiao, Y.-J.; Young, S.-J.; Shih, W.-S.; Water, W.; Lin, S.-M. High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films. IEEE Sens. J. 2015, 15, 762–765. [Google Scholar] [CrossRef]
- Kim, K.-D.; Pfadler, T.; Zimmermann, E.; Feng, Y.; Dorman, J.A.; Weickert, J.; Schmidt-Mende, L. Decoupling Optical and Electronic Optimization of Organic Solar Cells Using High-Performance Temperature-Stable TiO2/Ag/TiO2 Electrodes. APL Mater. 2015, 3. [Google Scholar] [CrossRef]
- Zhu, M.-Q.; Jin, H.-D.; Bi, P.-Q.; Zong, F.-J.; Ma, J.; Hao, X.-T. Performance Improvement of TiO2/Ag/TiO2 Multilayer Transparent Conducting Electrode Films for Application on Photodetectors. J. Phys. D Appl. Phys. 2016, 49, 115108. [Google Scholar] [CrossRef]
- Jia, J.H.; Zhou, P.; Xie, H.; You, H.Y.; Li, J.; Chen, L.Y. Study of Optical and Electrical Properties of TiO2/Ag/TiO2 Multilayers. J. Korean Phys. Soc. 2004, 44, 717–721. [Google Scholar]
- Baskoutas, S.; Athanasiou, N. Optical Constants of TiO2/Ag/TiO2 Three-Layer Thin Films. Mod. Phys. Lett. B 1997, 11, 1077–1084. [Google Scholar] [CrossRef]
- Hasan, M.M.; Haseeb, A.; Saidur, R.; Masjuki, H.H.; Johan, M.R. Structural, Optical and Morphological Properties of TiO 2/Ag/TiO2 Multilayer Films. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2009; Volume 1136, pp. 229–233. [Google Scholar]
- Zhao, Z.; Alford, T.L. The Optimal TiO2/Ag/TiO2 Electrode for Organic Solar Cell Application with High Device-Specific Haacke Figure of Merit. Sol. Energy Mater. Sol. Cells 2016, 157, 599–603. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, T.L. The Effect of Hole Transfer Layers and Anodes on Indium-Free TiO2/Ag/TiO2 Electrode and ITO Electrode Based P3HT:PCBM Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 176, 324–330. [Google Scholar] [CrossRef]
- Varnamkhasti, M.G.; Shahriari, E. Design and Fabrication of Nanometric TiO2/Ag/TiO2/Ag/TiO2 Transparent Conductive Electrode for Inverted Organic Photovoltaic Cells Application. Superlattices Microstruct. 2014, 69, 231–238. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.; Asokan, K.; Sachdev, K. NTO/Ag/NTO Multilayer Transparent Conducting Electrodes for Photovoltaic Applications Tuned by Low Energy Ion Implantation. Sol. Energy 2018, 173, 651–664. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, H.-K.; Lee, H.; Lee, H.; Yoon, S.; Kim, C.-D. Highly Transparent, Low Resistance, and Cost-Efficient Nb:TiO2/Ag/Nb:TiO2 Multilayer Electrode Prepared at Room Temperature Using Black Nb:TiO2 Target. Electrochem. Solid State Lett. 2010, 13, J53–J56. [Google Scholar] [CrossRef]
- Mardare, D.; Yildiz, A.; Girtan, M.; Manole, A.; Dobromir, M.; Irimia, M.; Adomnitei, C.; Cornei, N.; Luca, D. Surface Wettability of Titania Thin Films with Increasing Nb Content. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Manole, A.V.; Dobromir, M.; Girtan, M.; Mallet, R.; Rusu, G.; Luca, D. Optical Properties of Nb-Doped TiO2 Thin Films Prepared by Sol-Gel Method. Ceram. Int. 2013, 39, 4771–4776. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Jin, J.; Bi, W.; Zhang, B.; Chen, X.; Xu, L.; Liu, D.; Dai, Q.; Song, H. Near-Infrared and Ultraviolet to Visible Photon Conversion for Full Spectrum Response Perovskite Solar Cells. Nano Energy 2018, 50, 699–709. [Google Scholar] [CrossRef]
- Chang, K.-C.; Yeh, T.-H.; Lee, H.-Y.; Lee, C.-T. High Performance Perovskite Solar Cells Using Multiple Hole Transport Layer and Modulated FA(x)MA(1-x)PbI(3) Active Layer. J. Mater. Sci. Mater. Electron. 2020, 31, 4135–4141. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, X.; Zhang, N.; Chen, H.; Zheng, X.; Wang, H.; Guo, X. High-Performance NiO/Ag/NiO Transparent Electrodes for Flexible Organic Photovoltaic Cells. Acs Appl. Mater. Interfaces 2014, 6, 16403–16408. [Google Scholar] [CrossRef] [PubMed]
- Hosny, N.M. Synthesis, Characterization and Optical Band Gap of NiO Nanoparticles Derived from Anthranilic Acid Precursors via a Thermal Decomposition Route. Polyhedron 2011, 30, 470–476. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt, Rinehart & Winston: New York, NY, USA; London, UK, 1976; Volume 2005. [Google Scholar]
- Ramanathan, K.G.; Yen, S.H.; Estalote, E.A. Total Hemispherical Emissivities of Copper, Aluminum, and Silver. Appl. Opt. 1977, 16, 2810–2817. [Google Scholar] [CrossRef]
- Yang, H.U.; D’Archangel, J.; Sundheimer, M.L.; Tucker, E.; Boreman, G.D.; Raschke, M.B. Optical Dielectric Function of Silver. Phys. Rev. B 2015, 91, 235137. [Google Scholar] [CrossRef]
Layer | Atmosphere Conditions | Target–Substrate Distance (cm) | Deposition Current (mA) | Pressure (10−3 mbar) | Deposition Time | Target Composition (wt%) |
---|---|---|---|---|---|---|
TiO2 | Reactive atm. | 7 | 100 | 9 | 4 min | Ti 100% |
Ag | Argon atm. | 7 | 20 | 9 | 18 s | Ag 100% |
TiO2 | Reactive atm. | 7 | 100 | 9 | 4 min | Ti 100% |
TiO2:Nb | Reactive atm. | 7 | 100 | 9 | 4 min | Ti 94% Nb 6% |
Ag | Argon atm. | 7 | 20 | 9 | 18 s | Ag 100% |
TiO2:Nb | Reactive atm. | 7 | 100 | 9 | 4 min | Ti 94% Nb 6% |
NiO | Reactive atm. | 7 | 100 | 10 | 4 min | Ni 100% |
Ag | Argon atm. | 7 | 20 | 10 | 18 s | Ag 100% |
NiO | Reactive atm. | 7 | 100 | 10 | 4 min | Ni 100% |
Sample | RMS (nm) | RA (nm) | Without UV Light | With UV Light | ||
---|---|---|---|---|---|---|
CA (deg) t = 0′ | CA (deg) t = 10′ | CA (deg) t = 0′ | CA (deg) t = 10′ | |||
TiO2 | 6.4 | 4.5 | 55 | 35 | 57 | 27 |
TiO2/Ag/TiO2 | 8.2 | 5.9 | 95 | 83 | 79 | 49 |
TiO2/Ag/TiO2 (on PET) | 13.1 | 10.3 | 101 | 70 | 88 | 52 |
TiO2:Nb | 7.8 | 4.2 | 70 | 35 | 71 | 21 |
TiO2:Nb/Ag/TiO2:Nb | 16 | 9.9 | 91 | 60 | 99 | 67 |
TiO2:Nb/Ag/TiO2:Nb (on PET) | 26.5 | 20.7 | 90 | 54 | 93 | 77 |
NiO | 3.4 | 2.0 | 93 | 65 | 98 | 70 |
NiO/Ag/NiO | 2.6 | 1.8 | 96 | 68 | 100 | 79 |
NiO/Ag/NiO (on PET) | 6.8 | 5.4 | 102 | 87 | 101 | 81 |
Ag | 8.7 | 6.9 | 75 | 66 | 75 | 60 |
Sample | Thickness (nm) | Χ2 | ||
---|---|---|---|---|
TiO2 | 28 ± 1 | 4.55 | ||
TiO2:Nb | 28 ± 1 | 4.90 | ||
NiO | 63 ± 1 | 3.41 | ||
Oxide bottom layer | Ag | Oxide top layer | ||
TiO2/Ag/TiO2 | 24 ± 1 | 8 ± 1 | 37 ± 1 | 0.85 |
TiO2:Nb/Ag/TiO2:Nb | 34 ± 1 | 8 ± 1 | 42 ± 2 | 0.55 |
NiO/Ag/NiO | 42 ± 9 | 8 ± 1 | 72 ± 9 | 7.9 |
Sample | Eg by Ellipsometry (eV) | Eg by Spectrophotometry (eV) | Eg by Literature (eV) | Reference |
---|---|---|---|---|
TiO2 | 3.36 | 3.59 | 3.28–3.32 | [36] |
TiO2:Nb | 3.18 | 3.53 | 3.25–3.58 | [37] |
NiO | 3.76 | 3.20 | 3.60–4.00 | [38,39] |
Sample | ωp (s−1) Using Formula (1) and the Direct Measured Values of σ | ωp (s−1) From Ellipsometric Modeling |
---|---|---|
TiO2/Ag/TiO2 | ||
TiO2:Nb/Ag/TiO2:Nb | ||
NiO/Ag/NiO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrostea, L.; Lisnic, P.; Mallet, R.; Leontie, L.; Girtan, M. Studies on the Physical Properties of TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO Three-Layer Structures on Glass and Plastic Substrates as Transparent Conductive Electrodes for Solar Cells. Nanomaterials 2021, 11, 1416. https://doi.org/10.3390/nano11061416
Hrostea L, Lisnic P, Mallet R, Leontie L, Girtan M. Studies on the Physical Properties of TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO Three-Layer Structures on Glass and Plastic Substrates as Transparent Conductive Electrodes for Solar Cells. Nanomaterials. 2021; 11(6):1416. https://doi.org/10.3390/nano11061416
Chicago/Turabian StyleHrostea, Laura, Petru Lisnic, Romain Mallet, Liviu Leontie, and Mihaela Girtan. 2021. "Studies on the Physical Properties of TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO Three-Layer Structures on Glass and Plastic Substrates as Transparent Conductive Electrodes for Solar Cells" Nanomaterials 11, no. 6: 1416. https://doi.org/10.3390/nano11061416
APA StyleHrostea, L., Lisnic, P., Mallet, R., Leontie, L., & Girtan, M. (2021). Studies on the Physical Properties of TiO2:Nb/Ag/TiO2:Nb and NiO/Ag/NiO Three-Layer Structures on Glass and Plastic Substrates as Transparent Conductive Electrodes for Solar Cells. Nanomaterials, 11(6), 1416. https://doi.org/10.3390/nano11061416