Hyperfine Interactions in the NV-13C Quantum Registers in Diamond Grown from the Azaadamantane Seed
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The nitrogen-vacancy color centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Dobrovitski, V.; Fuchs, G.D.; Falk, A.L.; Santori, C.; Awschalom, D.D. Quantum control over Single Spins in Diamond. Annu. Rev. Cond. Mat. Phys. 2013, 4, 23. [Google Scholar] [CrossRef]
- Neumann, P.; Wrachtrup, J. Quantum Optical Diamond Technologies. In Optical Engineering of Diamond; Mildren, R.P., Rabeau, J.R., Eds.; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2013; p. 277. [Google Scholar]
- Rondin, L.; Tetienne, J.-P.; Hingant, T.; Roch, J.-F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 2014, 65, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekimov, E.A.; Kondrin, M.V. Vacancy-impurity centers in diamond: Prospects for synthesis and applications. Phys. Uspekhi. 2017, 60, 539. [Google Scholar] [CrossRef]
- Becker, J.N.; Becher, C. Coherence Properties and Quantum Control of Silicon Vacancy Color Centers in Diamond. Phys. Status Solidi A 2017, 214, 1700586. [Google Scholar] [CrossRef] [Green Version]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 2018, 12, 516. [Google Scholar] [CrossRef]
- Souza, A.M.; Álvarez, G.A.; Suter, D. Robust dynamical decoupling. Philos. Trans. R. Soc. A 2012, 370, 4748. [Google Scholar] [CrossRef] [PubMed]
- Dréau, A.; Maze, J.-R.; Lesik, M.; Roch, J.-F.; Jacques, V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Phys. Rev. B 2012, 85, 134107. [Google Scholar] [CrossRef] [Green Version]
- Markham, M.L.; Dodson, J.M.; Scarsbrook, G.A.; Twitchen, D.J.; Balasubramanian, G.; Jelezko, F.; Wrachtrup, J. CVD diamond for spintronics. Diam. Relat. Mater. 2011, 20, 134. [Google Scholar] [CrossRef]
- Orwa, J.O.; Greentree, A.D.; Aharonovich, I.; Alves, A.D.C.; VanDonkelaar, J.; Stacey, A.; Prawer, S. Fabrication of single optical centres in diamond—A review. J. Lumin. 2010, 130, 1646. [Google Scholar] [CrossRef]
- Unden, T.; Tomek, N.; Weggler, T.; Frank, F.; London, P.; Zopes, J.; Degen, C.; Raatz, N.; Meijer, J.; Watanabe, J.H.; et al. Coherent control of solid state nuclear spin nano-ensembles. NPJ Quantum Inf. 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Zapata, T.; Bennett, N.; Struzhkin, V.; Fei, Y.; Jelezko, F.; Biskupek, J.; Kaiser, U.; Reuter, R.; Wrachtrup, J.; Ghannam, F.A. Organic nanodiamonds. arXiv 2017, arXiv:1702.06854. [Google Scholar]
- Alkahtani, M.H.; Alghannam, F.; Jiang, L.; Almethen, A.; Rampersaud, A.A.; Brick, R.; Gomes, C.L.; Scully, M.O.; Hemmer, P.R. Fluorescent nanodiamonds: Past, present, and future. Nanophotonics 2018, 7, 1423. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Kudryavtsev, O.S.; Mordvinova, N.E.; Lebedev, O.I.; Vlasov, I.I. High-pressure synthesis of nanodiamond from adamantane: Myth or reality? ChemNanoMat 2017, 4, 269. [Google Scholar] [CrossRef]
- Mansoori, G.A. Diamondoid molecules. Adv. Chem. Phys. 2007, 136, 207. [Google Scholar]
- Schwertfeger, H.; Fokin, A.A.; Schreiner, P.R. Diamonds are a Chemist’s Best Friend: Diamondoid Chemistry beyond Adamantane. Angew. Chem. Int. Ed. 2007, 47, 1022. [Google Scholar] [CrossRef]
- Dahl, J.E.P.; Moldowan, J.M.; Wei, Z.; Lipton, P.A.; Denisevich, P.; Gat, R.; Liu, S.; Schreiner, P.R.; Carlson, R.M.K. Synthesis of Higher Diamondoids and Implications for Their Formationin Petroleum. Angew. Chem. Int. Ed. 2010, 49, 9881. [Google Scholar] [CrossRef]
- Clay, W.A.; Dahl, J.E.P.; Carlson, R.M.K.; Melosh, N.A.; Shen, Z.-X. Physical properties of materials derived from diamondoid molecules. Rep. Prog. Phys. 2015, 78, 016501. [Google Scholar] [CrossRef] [PubMed]
- Yeung, K.W.; Dong, Y.; Chen, L.; Tang, C.Y.; Law, W.C.; Tsui, G.C. Nanotechnology of diamondoids for the fabrication of nanostructured systems. Nanotechnol. Rev. 2020, 9, 650. [Google Scholar] [CrossRef]
- Gunawan, M.A.; Hierso, J.-C.; Poinsot, D.; Fokin, A.A.; Fokina, H.A.; Tkachenko, B.A.; Schreiner, P.R. Diamondoids: Functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons. New J. Chem. 2014, 38, 28. [Google Scholar] [CrossRef]
- Averina, N.V.; Zefirov, N.S. Advances in the Synthesis of Heteroadamantanes. Russ. Chem. Rev. 1976, 45, 1077. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Zefirov, N.S. Azaadamantanes with nitrogen atoms in the bridgehead positions. Russ. Chem. Rev. 1989, 58, 1033. [Google Scholar] [CrossRef]
- Sasaki, T. Heteroadamantane. Adv. Heterocycl. Chem. 1982, 30, 79. [Google Scholar]
- Tiwari, R.N.; Chang, L. Chemical Precursor for the Synthesis of Diamond Films at Low Temperature. Appl. Phys. Express 2010, 3, 045501. [Google Scholar] [CrossRef]
- Park, S.; Abate, I.I.; Liu, J.; Wang, C.; Dahl, J.E.P.; Carlson, R.M.K.; Yang, L.; Prakapenka, V.B.; Greenberg, E.; Devereaux, T.P.; et al. Facile diamond synthesis from lower diamondoids. Sci. Adv. 2020, 6, eaay9405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekimov, E.A.; Kondrina, K.M.; Mordvinova, N.E.; Lebedev, O.I.; Pasternak, D.G.; Vlasov, I.I. High-pressure, high-temperature synthesis of nanodiamond from Adamantane. Inorg. Mater. 2019, 55, 437. [Google Scholar] [CrossRef]
- Gebbie, M.A.; Ishiwata, H.; McQuade, P.J.; Petrak, V.; Taylor, A.; Freiwald, C.; Dahl, J.E.; Carlson, R.M.K.; Fokin, A.A.; Schreiner, P.R.; et al. Experimental measurement of the diamond nucleationlandscape reveals classical and nonclassical features. Proc. Natl. Acad. Sci. USA 2018, 115, 8284. [Google Scholar] [CrossRef] [Green Version]
- Ekimov, E.A.; Lyapin, S.G.; Grigoriev, Y.V.; Zibrov, I.P.; Kondrina, K.M. Size-controllable synthesis of ultrasmall diamonds from halogenated adamantanes at high static pressure. Carbon 2019, 150, 436. [Google Scholar] [CrossRef]
- Alkahtani, M.; Lang, J.; Naydenov, B.; Jelezko, F.; Hemmer, P. Growth of high-purity low-strain fluorescent nanodiamonds. ACS Photonics 2019, 6, 1266. [Google Scholar] [CrossRef]
- Anzellini, S.; Boccato, S. A Practical Review of the Laser-Heated Diamond Anvil Cell for University Laboratories and Synchrotron Applications. Crystals 2020, 10, 459. [Google Scholar] [CrossRef]
- Nizovtsev, A.P.; Kilin, S.Y.; Pushkarchuk, A.L.; Pushkarchuk, V.A.; Kuten, S.A.; Zhikol, O.A.; Schmitt, S.; Unden, T.; Jelezko, F. Non-flipping 13C spins near an NV center in diamond: Hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]-H252 cluster. New J. Phys. 2018, 20, 023022. [Google Scholar] [CrossRef]
- Nizovtsev, A.P.; Kilin, S.Y.; Pushkarchuk, A.L.; Kuten, S.A.; Gusev, A.S.; Jelezko, F. Hyperfine characteristics of quantum registers NV-13C in diamond nanocrystals formed by seeding approach from isotopic aza-adamantane and methyl-aza-adamanthane. Semiconductors 2020, 54, 1689. [Google Scholar] [CrossRef]
- Nizovtsev, A.P.; Kilin, S.Y.; Pushkarchuk, A.L.; Pushkarchuk, V.A.; Jelezko, F. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting NV center. New J. Phys. 2014, 16, 083014. [Google Scholar] [CrossRef]
- Zopes, J.; Cujia, K.S.; Sasaki, K.; Boss, J.M.; Itoh, K.M.; Degen, C.L. Three-dimensional localization spectroscopy of individual nuclear spins with sub-Angstrom resolution. Nat. Communs. 2018, 9, 4678. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Itoh, K.K.; Abe, E. Determination of the position of a single nuclear spin from free nuclear precessions detected by a solid-state quantum sensor. Phys. Rev. B 2018, 98, 121405. [Google Scholar] [CrossRef] [Green Version]
- Abobeih, M.H.; Randall, J.; Bradley, C.E.; Bartling, H.P.; Bakker, M.A.; Degen, M.J.; Markham, M.; Twitchen, D.J.; Taminiau, T.H. Atomic-scale imaging of a 27-nuclear-spin cluster using a single-spin quantum sensor. Nature 2019, 576, 411. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.R.K.; Suter, D. Characterization of hyperfine interaction between an NV electron spin and a first shell 13C nuclear spin in diamond. Phys. Rev. B 2016, 94, 060101. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 465, 648. [Google Scholar] [CrossRef] [Green Version]
- Mittiga, T.; Hsieh, S.; Zu, C.; Kobrin, B.; Machado, F.; Bhattacharyya, P.; Rui, N.; Jarmola, A.; Choi, S.; Budker, D.; et al. Imaging the local charge environment of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 2018, 121, 246402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Ishiwata, H.; Babinec, T.M.; Radulaski, M.; Müller, K.; Lagoudakis, K.G.; Dory, C.; Dahl, J.; Edgington, R.; Soulière, V.; et al. Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers. Nano Lett. 2016, 16, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name of Seed | Spin System in the C510[NV]-H252 Cluster | AZZ (kHz) | And (kHz) | Δ0 (kHz) |
---|---|---|---|---|
2-azaadamantabe seed | ||||
NV1-C(2) | 577 | 560 | 804 | |
NV1-C(3) | 566 | 559 | 796 | |
NV1-C(342) | −224 | 396 | 455 | |
NV1-C(343) | 3591 | 742 | 3666 | |
NV1-C(345) | 3570 | 741 | 3645 | |
NV1-C(414) | 152 | 93 | 178 | |
NV1-C(415) | 345 | 150 | 376 | |
NV1-C(417) | 341 | 150 | 373 | |
NV1-C(429) | 641 | 169 | 663 | |
NV3-C(2) | 577 | 560 | 803.8 | |
NV3-C(4) | 136,870 | 19,877 | 134,100 | |
NV3-C(6) | 136,810 | 19,767 | 134,020 | |
NV3-C(246) | −6339 | 933 | 6411 | |
NV3-C(257) | −6334 | 936 | 6407 | |
NV3-C(258) | 968 | 121 | 974 | |
NV3-C(331) | 3581 | 744 | 3656 | |
NV3-C(343) | 3591 | 742 | 3666 | |
NV4-C(1) | 560 | 560 | 792 | |
NV4-C(4) | 136,870 | 19,877 | 134,100 | |
NV4-C(5) | 136,520 | 19,964 | 133,780 | |
NV4-C(234) | −6357 | 933 | 6429 | |
NV4-C(236) | −6370 | 932 | 6442 | |
NV4-C(237) | 1020 | 127 | 1026 | |
NV4-C(320) | 3561 | 744 | 3637 | |
NV4-C(322) | 3590 | 744 | 3665 | |
1-azaadamantane seed | ||||
NV5-C(1) | 560 | 560 | 792 | |
NV5-C(2) | 577 | 560 | 804 | |
NV5-C(3) | 566 | 559 | 795 | |
NV5-C(400) | 153 | 93 | 179 | |
NV5-C(402) | 153 | 93 | 179 | |
NV5-C(403) | 338 | 151 | 370 | |
NV5-C(414) | 152 | 93 | 178 | |
NV5-C(415) | 345 | 150 | 376 | |
NV5-C(417) | 341 | 150 | 373 | |
NV6-C(2) | 577 | 560 | 804 | |
NV6-C(3) | 56 | 559 | 795 | |
NV6-C(6) | 136,810 | 19,767 | 134,020 | |
NV6-C(257) | −6334 | 936 | 6407 | |
NV6-C(259) | −6338 | 938 | 6411 | |
NV6-C(342) | −224 | 396 | 455 | |
NV6-C(343) | 3591 | 742 | 3666 | |
NV6-C(345) | 3570 | 741 | 3645 | |
NV7-C(2) | 577 | 560 | 804 | |
NV7-C(3) | 566 | 559 | 795 | |
NV7-C(6) | 136,810 | 19,767 | 134,020 | |
NV7-C(257) | −6334 | 936 | 6407 | |
NV7-C(259) | −6338 | 938 | 6411 | |
NV7-C(342) | −224 | 396 | 455 | |
NV7-C(343) | 3591 | 742 | 3666 | |
NV7-C(345) | 3570 | 741 | 3645 | |
NV8-C(2) | 577 | 560 | 804 | |
NV8-C(3) | 566 | 559 | 795 | |
NV8-C(6) | 136,810 | 19,767 | 134,020 | |
NV8-C(257) | −6334 | 936 | 6407 | |
NV8-C(259) | −6338 | 938 | 6411 | |
NV8-C(342) | −224 | 396 | 455 | |
NV8-C(343) | 3591 | 742 | 3666 | |
NV8-C(345) | 3570 | 741 | 3645 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizovtsev, A.P.; Pushkarchuk, A.L.; Kilin, S.Y.; Kargin, N.I.; Gusev, A.S.; Smirnova, M.O.; Jelezko, F. Hyperfine Interactions in the NV-13C Quantum Registers in Diamond Grown from the Azaadamantane Seed. Nanomaterials 2021, 11, 1303. https://doi.org/10.3390/nano11051303
Nizovtsev AP, Pushkarchuk AL, Kilin SY, Kargin NI, Gusev AS, Smirnova MO, Jelezko F. Hyperfine Interactions in the NV-13C Quantum Registers in Diamond Grown from the Azaadamantane Seed. Nanomaterials. 2021; 11(5):1303. https://doi.org/10.3390/nano11051303
Chicago/Turabian StyleNizovtsev, Alexander P., Aliaksandr L. Pushkarchuk, Sergei Ya. Kilin, Nikolai I. Kargin, Alexander S. Gusev, Marina O. Smirnova, and Fedor Jelezko. 2021. "Hyperfine Interactions in the NV-13C Quantum Registers in Diamond Grown from the Azaadamantane Seed" Nanomaterials 11, no. 5: 1303. https://doi.org/10.3390/nano11051303