Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances
Abstract
:1. Introduction
2. SP Enhancement Mechanism in Nitride-Based QW-LEDs
3. Key Performance Parameters
4. State-of-the-Art and Challenges
5. Factors Affecting SP–QW Coupling Enhancement in Nitride-Based LEDs
5.1. SP–QW Coupling Dependence on Penetration Depth and Capping Layer Thickness
5.2. SP–QW Coupling Dependence on QW Period Number
5.3. SP–QW Coupling Dependence on the Metal and Metal Nanostructure Geometry
5.4. SP–QW Coupling Dependence on Dielectric Interlayer
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okamoto, K.; Funato, M.; Kawakami, Y.; Tamada, K. High-efficiency light emission by means of exciton–surface-plasmon coupling. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 58–77. [Google Scholar] [CrossRef]
- Kitson, S.C.; Barnes, W.L.; Sambles, J.R. Full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 1996, 77, 2670–2673. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.W.A.; Barnes, W.L. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Holonyak, N.; Bevacqua, S.F. Coherent (visible) light emission from GaN (As1-XPx) junctions. Appl. Phys. Lett. 1962, 82, 26–28. [Google Scholar] [CrossRef]
- Chung, H.Y.; Kim, S.J.; Kim, T.G. Performance improvements in InGaN/GaN light-emitting diodes using electron blocking layer with V-shaped graded Al composition. Superlattices Microstruct. 2014, 75, 390–397. [Google Scholar] [CrossRef]
- Xie, R.; Li, Z.; Li, X.; Gu, E.; Niu, L.; Sha, X. Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag/p-GaN double grating. Opt. Commun. 2018, 419, 108–113. [Google Scholar] [CrossRef]
- Ghosh, R.; Haldar, A.; Ghosh, K.K.; Chakraborty, R. Further enhancement of light extraction efficiency from light emitting diode using triangular surface grating and thin interface layer. Appl. Opt. 2015, 54, 919–926. [Google Scholar] [CrossRef]
- Gontijo, I.; Boroditsky, M.; Yablonovitch, E.; Keller, S.; Mishra, U.K.; Denbaars, S.P. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 1999, 60, 564–567. [Google Scholar] [CrossRef] [Green Version]
- Neogi, A.; Lee, C.W.; Everitt, H.O.; Kurdoa, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 2002, 66, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605. [Google Scholar] [CrossRef]
- Lin, C.H.; Su, C.Y.; Zhu, E.; Yao, Y.F.; Hsieh, C.; Tu, C.G.; Chen, H.T.; Kiang, Y.W.; Yang, C.C. Modulation behaviors of surface plasmon coupled light-emitting diode. Opt. Express 2015, 23, 8150–8161. [Google Scholar] [CrossRef]
- Lin, C.H.; Chiang, H.C.; Wang, Y.T.; Yao, Y.F.; Chen, C.C.; Tse, W.F.; Wu, R.N.; Chang, W.Y.; Kuo, Y.; Kiang, Y.W.; et al. Efficiency enhancement of light color conversion through surface plasmon coupling. Opt. Express 2018, 26, 23629–23640. [Google Scholar] [CrossRef]
- Homeyer, E.; Mattila, P.; Oksanen, J.; Sadi, T.; Nykänen, H.; Suihkonen, S.; Symonds, C.; Tulkki, J.; Tuomisto, F.; Sopanen, M.; et al. Enhanced light extraction from InGaN/GaN quantum wells with silver gratings. Appl. Phys. Lett. 2020, 102, 081110. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Sun, H.; Zhang, Y.; Su, H.; Shi, X.; Guo, Z. Surface plasmon coupling with radiating dipole for enhancing the emission efficiency and light extraction of a deep ultraviolet light emitting diode. Plasmonics 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, N.; Shang, L.; Fu, L.; Wang, W.; Xu, F. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Sci. Rep. 2017, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Su, C.Y.; Yao, Y.F.; Su, M.Y.; Chiang, H.C.; Tsai, M.C.; Liu, W.H.; Tu, C.G.; Kiang, Y.W.; Yang, C.C.; et al. Further emission efficiency improvement of a commercial-quality light-emitting diode through surface plasmon coupling. Opt. Lett. 2018, 43, 5631–5634. [Google Scholar] [CrossRef]
- Tse, W.F.; Wu, R.N.; Lu, C.C.; Hsu, Y.C.; Chen, Y.P.; Kuo, S.Y.; Su, Y.C.; Wu, P.H.; Kuo, Y.; Kiang, Y.W.; et al. Spatial range of the Plasmonic Dicke Effect in an InGaN/GaN multiple quantum well structure. Nanotechnology 2020, 31, 295001. [Google Scholar] [CrossRef]
- Neogi, A.; Morko, H. Resonant surface plasmon-induced modification of photoluminescence from GaN/AlN quantum dots. Nanotechnology 2004, 15, 1252. [Google Scholar] [CrossRef]
- Chen, H.S.; Chen, C.F.; Kuo, Y.; Chou, W.H.; Shen, C.H.; Jung, Y.L.; Kiang, Y.W.; Yang, C.C. Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl. Phys. Lett. 2013, 102, 041108. [Google Scholar] [CrossRef]
- Shen, K.C.; Chen, C.Y.; Chen, H.L.; Huang, C.F.; Kiang, Y.W.; Yang, C.C.; Yang, Y.J. Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating. Appl. Phys. Lett. 2014, 93, 231111. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Hsieh, C.; Tu, C.; Kuo, Y.; Chen, H.; Shih, P.; Liao, C.; Kiang, Y.W.; Yang, C.C.; Lai, C.H.; et al. Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering. Opt. Express 2014, 22, A842–A856. [Google Scholar] [CrossRef]
- Gu, X.; Qiu, T.; Zhang, W.; Chu, P.K. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res. Lett. 2011, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.Y.; Park, S.J. Enhanced optical output and reduction of the quantum-confined stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles. Opt. Express 2016, 24, 3663–3665. [Google Scholar] [CrossRef]
- Su, C.Y.; Lin, C.H.; Yao, Y.F.; Liu, W.H.; Su, M.Y.; Chiang, H.C.; Tsai, M.C.; Tu, C.G.; Chen, H.T.; Kiang, Y.W.; et al. Dependencies of surface plasmon coupling effects on the p-gan thickness of a thin-p- type light-emitting diode. Opt. Express 2017, 25, 21526–21536. [Google Scholar] [CrossRef]
- Kwon, M.K.; Kim, J.Y.; Kim, B.H.; Park, I.K.; Cho, C.Y.; Byeon, C.C.; Park, S.J. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 2008, 20, 1253–1257. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Scherer, A.; Narukawa, Y.; Mukai, T. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 2005, 87, 071102–071103. [Google Scholar] [CrossRef] [Green Version]
- Mano, R.; Han, D.P.; Yamamoto, K.; Ishimoto, S.; Kamiyama, S.; Takeuchi, T.; Iwaya, M.; Akasaki, I. Tuning the resonant frequency of a surface plasmon by double-metallic Ag/Au nanoparticles for high-efficiency green light-emiiting dieods. Appl. Sci. 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Yeh, D.M.; Huang, C.F.; Chen, C.Y.; Lu, Y.C.; Yang, C.C. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl. Phys. Lett. 2014, 91, 171103. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Hu, Z.; Chen, Z.; Fu, X.; Jiang, X.; Jiao, Q.; Yu, T.; Zhang, G. Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED. Opt. Express 2013, 21, 12100–12110. [Google Scholar] [CrossRef]
- Cho, C.Y.; Kwon, M.K.; Lee, S.J.; Han, S.H.; Kang, J.W.; Kang, S.E.; Lee, D.Y.; Park, S.J. Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN. Nanotechnology 2010, 21, 205201. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Tateishi, K.; Tamada, K.; Funato, M.; Kawakami, Y. Micro-photoluminescence mapping of surface plasmon-coupled emission from InGaN/GaN quantum wells. Jpn. J. Appl. Phys. 2019, 58, SCCB31. [Google Scholar] [CrossRef]
- Ma, L.; Yu, P.; Wang, W.; Kuo, H.C.; Govorov, A.O.; Sun, S.; Wang, Z. Nanoantenna-enhanced light-emitting diodes: Fundamental and recent progress. Laser Photonics Rev. 2021, 2000367. [Google Scholar] [CrossRef]
- Nicole, K.; Laak, V.D.; Oliver, R.A.; Kappers, M.J.; Humphreys, C.J. Role of gross well-width fluctuations in bright, green-emitting single InGaN/GaN quantum well structures. Appl. Phys. Lett. 2007, 90, 121911. [Google Scholar] [CrossRef]
- Monemar, B.; Sernelius, B.E. Defect related issues in the “current roll-off” in InGaN based light emitting diodes. Appl. Phys. Lett. 2007, 91, 181103. [Google Scholar] [CrossRef]
- Schubert, M.F.; Chhajed, S.; Kim, J.K.; Schubert, E.F.; Koleske, D.D.; Crawford, M.H.; Lee, S.; Fischer, A.J.; Thaler, G.; Banas, M.A. Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 2007, 91, 231114. [Google Scholar] [CrossRef] [Green Version]
- Angleiter, A.; Hitzel, F.; Netzel, C.; Fuhrmann, D.; Rossow, U.; Ade, G.; Hinze, P. Suppression of Nonradiative Recombination by V-Shaped Pits in GaInN/GaN Quantum Wells Produces a Large Increase in the Light Emission Efficiency. Phys. Rev. Lett. 2005, 95, 127402. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, U.T.; Kneissl, M. Nitride emitters go nonpolar. Phys. Stat. Sol. 2007, 1, A44–A46. [Google Scholar] [CrossRef]
- Iso, K.; Yamada, H.; Hirasawa, H.; Fellows, N.; Saito, M.; Fujito, K.; Denbaars, S.P.; Speck, J.S.; Nakamura, S. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate. J. Appl. Phys. 2007, 46, L960–L962. [Google Scholar] [CrossRef]
- Fadil, A.; Iida, D.; Chen, Y.; Ou, Y.; Kamiyama, S.; Ou, H. Influence of near-field coupling from Ag surface plasmons on InGaN/GaN quantum-well photoluminescence. J. Lumin. 2016, 175, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.C.; Su, Y.K.; Lin, C.L.; Chen, J.J. Localized surface plasmon-enhanced nitride-based light-emitting diode with Ag nanotriangle array by nanosphere lithography. IEEE Photonic. Technol. Lett. 2010, 22, 984–986. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, J.P.; Cheng, P.P.; Zhu, J.J.; Xu, Z.Q.; Deng, Y.H.; Lee, S.T.; Li, Y.Q.; Tang, J.X. Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles. Appl. Phys. Lett. 2012, 100, 013308. [Google Scholar] [CrossRef] [Green Version]
- Gao, N.; Huang, K.; Li, J.; Li, S.; Yang, X.; Kang, J. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Zhang, Y.; Cicek, E.; Rahnema, B.; Bai, Y.; McClintock, R.; Razeghi, M. Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111). Appl. Phys. Lett. 2013, 102, 211110. [Google Scholar] [CrossRef]
- Akimov, A.V.; Mukherjee, A.; Yu, C.L.; Chang, D.E.; Zibrov, A.S.; Hemmer, P.R.; Park, H.; Lukin, M.D. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 2007, 450, 402–406. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Z.; Fu, X.; Jiao, Q.; Feng, Y.; Yang, W.; Ma, J.; Li, J.; Jiang, S.; Yu, T.; et al. Fabrication and effects of Ag nanoparticles hexagonal arrays in green LEDs by nanoimprint. IEEE Photonic. Technol. Lett. 2015, 27, 1363–1366. [Google Scholar] [CrossRef]
- Henson, J.; Dimakis, E.; Dimaria, J.; Li, R.; Minissale, S.; Negro, L.D.; Moustakas, T.D.; Paiella, R. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Opt. Express 2010, 18, 21322–21329. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.H.; Lan, C.C.; Lai, Y.L.; Li, Y.L.; Liu, C.P. Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array. Adv. Funct. Mater. 2011, 21, 4719–4723. [Google Scholar] [CrossRef]
- Yao, Y.F.; Lin, C.H.; Chao, C.Y.; Chang, W.Y.; Su, C.Y.; Tu, C.G.; Kiang, Y.W.; Yang, C.C. Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries. Opt. Express 2018, 26, 9205–9219. [Google Scholar] [CrossRef]
- Zheng, Y.D.; Xiao, F.A.; Liu, W.J.; Hu, X.L. Purcell effect and light extraction of Tamm-plasmon-cavity green light-emitting diodes. Opt. Express 2019, 27, 30852–30863. [Google Scholar] [CrossRef]
- Tateishi, K.; Wang, P.; Ryuzaki, S.; Funato, M.; Kawakami, Y.; Okamoto, K.; Tamada, K. Micro-photoluminescence mapping of surface plasmon enhanced light emissions from InGaN/GaN quantum wells. Appl. Phys. Lett. 2017, 111, 172105. [Google Scholar] [CrossRef]
- Fan, X.; Hao, Q.; Qiu, T.; Chu, P.K. Improving the performance of light-emitting diodes via plasmonic-based strategies. J. Appl. Phys. 2020, 127, 040901. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Su, C.Y.; Kuo, Y.; Chen, C.H.; Yao, Y.F.; Shih, P.Y.; Chen, H.S.; Hsieh, C.; Kiang, Y.W.; Yang, C.C. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl. Phys. Lett. 2014, 105, 101106. [Google Scholar] [CrossRef]
- Yan, X.; Shatalov, M.; Saxena, T.; Shur, M.S. Deep-ultraviolet tailored- and low-refractive index antireflection coatings for light-extraction enhancement of light emitting diodes. J. Appl. Phys. 2013, 113, 163105. [Google Scholar] [CrossRef]
- Fadil, A.; Iida, D.; Chen, Y.; Ma, J.; Ou, Y.; Peterson, P.M.; Ou, H. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Hashimoto, R.; Hwang, J.; Nunoue, S. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl. Phys. Express 2013, 6, 111004. [Google Scholar] [CrossRef]
- Crawford, M.H. LEDs for Solid-state lighting: Performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028–1040. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Su, X.; Tang, W.; Li, Q.; Guo, M.; Zhang, Y.; Minyan, Z.; Yun, F.; Hou, X. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs. AIP Adv. 2017, 7, 115118. [Google Scholar] [CrossRef]
- Shen, Y.C.; Mueller, G.O.; Watanabe, S.; Gardner, N.F.; Munkholm, A.; Krames, M.R. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 2007, 91, 141101. [Google Scholar] [CrossRef]
- Hader, J.; Moloney, J.V.; Pasenow, B.; Koch, S.W.; Sabathil, M.; Linder, N.; Lutgen, S. On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 2008, 92, 261103. [Google Scholar] [CrossRef]
- Delaney, K.T.; Rinke, P.; Van De Walle, C.G. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 2009, 94, 191109. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.Y.; Lee, S.J.; Song, J.H.; Hong, S.H.; Lee, S.M.; Cho, Y.H.; Park, S.J. Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl. Phys. Lett. 2011, 98, 051106. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, G.; Zhang, J.; Poplawsky, J.D.; Dierolf, V.; Tansu, N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 2011, 19, 1179–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Li, Y.; Li, Y.; Deng, Z.; Lu, T.; Ma, Z.; Zuo, P.; Dai, L.; Wang, L.; Jia, H.; et al. Realization of high-luminous- efficiency InGaN light-emitting diodes in the “Green Gap” range. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneta, A.; Okamoto, K.; Kawakami, Y.; Fujita, S.; Marustuki, G.; Narukawa, Y.; Mukai, T. Spatial and temporal luminescence dynamics in an InxGa1-XN single quantum well probed by near-field optical microscopy. Appl. Phys. Lett. 2002, 81, 4353–4355. [Google Scholar] [CrossRef] [Green Version]
- Kneissl, M.; Seong, T.Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Schubert, E.F.; Kim, J.K. Solid-state light sources getting smart. Science 2005, 308, 1274–1279. [Google Scholar] [CrossRef]
- Khan, A.; Balakrishnan, K.; Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2008, 2, 77–84. [Google Scholar] [CrossRef]
- Lee, J.W.; Ha, G.; Park, J.; Song, H.G.; Park, J.Y.; Lee, J.; Cho, Y.H.; Lee, J.L.; Kim, J.K.; Kim, J.K. AlGaN deep-ultraviolet light-emitting diodes with localized surface plasmon resonance by a high-density array of 40 nm Al nanoparticles. ACS Appl. Mater. Inter. 2020, 12, 36339–36346. [Google Scholar] [CrossRef]
- Kneissl, M.; Rass, J. III-Nitride Ultraviolet Emitters; Springer: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Deguchi, T.; Sekiguchi, K.; Nakamura, A.; Sota, T.; Matsuo, R.; Chichibu, S.; Nakamura, S. Quantum-Confined Stark Effect in an AlGaN/GaN/AlGaN Single Quantum Well Structure. Jpn. J. Appl. Phys. 1999, 38, L914–L916. [Google Scholar] [CrossRef]
- Reich, C.; Feneberg, M.; Kueller, V.; Knauer, A.; Wernicke, T.; Schlegel, J.; Frentrup, M.; Goldhahn, R.; Weyers, M.; Kneissl, M. Excitonic recombination in epitaxial lateral overgrown AlN on sapphire. Appl. Phys. Lett. 2013, 103, 212108. [Google Scholar] [CrossRef]
- Su, C.Y.; Chen, W.H.; Kuo, Y.; Lin, C.H.; Su, M.Y.; Tsai, M.C.; Chang, W.Y.; Hseieh, C.; Tu, C.G.; Yao, Y.Y.; et al. Enhancement of Emission Efficiency of Deep-Ultraviolet AlGaN Quantum Wells through surface plasmon coupling with an Al Nanograting Structure. Plasmonics 2018, 13, 863–872. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Chen, J.; Wu, F.; Dai, J.; Long, H.; Zhang, Y.; Zhang, W.; Feng, Z.C.; Zhang, J.; et al. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by al nanoparticles on SiO2 dielectric interlayer. Nanotechnology 2018, 29, 2018. [Google Scholar] [CrossRef]
- Li, Y.; Li, A.; Zhang, Y.; Hu, P.; Du, W.; Su, X.; Li, Q.; Yun, F. Nanoscale characterization of surface plasmon-coupled photoluminescence enhancement in pseudo micro blue LEDs using near-field scanning optical microscopy. Nanomaterials 2020, 10, 751. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Hsieh, C.; Liao, C.H.; Chung, W.L.; Chen, H.T.; Cao, W.; Chang, M.W.; Chen, H.S.; Yao, Y.F.; Ting, S.Y.; et al. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode. Opt. Express 2012, 20, 1691–1693. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, H.; Chang, W.; Chen, H.; Yang, C.C.; Kiang, Y. Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device. Opt. Express 2014, 22, 155–166. [Google Scholar] [CrossRef]
- Yeh, D.M.; Chen, Y.C.; Lu, Y.C.; Huang, C.F.; Yang, C.C. Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well. Nanotechnology 2007, 18, 265402. [Google Scholar] [CrossRef]
- Su, C.; Tu, C.G.; Liu, W.H.; Lin, C.H.; Yao, Y.F.; Chen, H.T.; Wu, Y.R.; Kiang, Y.W.; Yang, C.C. Enhancing the hole-injection efficiency of a light-emitting diode by increasing Mg doping in the p-AlGaN electron-blocking layer. Trans. Electron Devices 2017, 64, 3226–3233. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Liu, G.; Tansu, N. Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes. Appl. Phys. Lett. 2014, 98, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Lida, D.; Fadil, A.; Chen, Y.; Ou, Y.; Kopylov, O.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Ou, H. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles. AIP Adv. 2015, 5, 097169. [Google Scholar] [CrossRef] [Green Version]
- Tatebayashi, J.; Yamada, T.; Inaba, T.; Timmerman, D.; Ichikawa, S.; Fujiwara, Y. Localized-surface-plasmon-enhanced GaN:Eu-based red light-emitting diodes utilizing silver nanoparticles. Appl. Phys. Express 2019, 12, 095003. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Chen, Z.; Jiao, F.; Zhan, J.; Chen, Y.; Nie, J.; Pan, Z.; Kang, X.; Li, S.; et al. Study on electron-induced surface plasmon coupling with quantum well using a perturbation method. Nanomaterials 2020, 10, 913. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, Z.; Zhang, M.; Li, Q.; Su, X.; Zhang, Y.; Hu, P.; Li, Y.; Yun, F. Enhanced coupling efficiency and electrical property in surface plasmon-enhanced light-emitting diodes with the tapered Ag structure. Opt. Express 2020, 28, 35708–35715. [Google Scholar] [CrossRef] [PubMed]
- Stockman, M.I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2004, 93, 137404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiener, A.; Fernández-Domínguez, A.I.; Horsfield, A.P.; Pendry, J.B.; Maier, S.A. Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett. 2012, 12, 3308–3314. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Q.; Fan, Q.; Zhu, Y. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells. Superlattices Microstruct. 2018, 117, 200–206. [Google Scholar] [CrossRef]
- Lu, Y.C.; Chen, Y.S.; Tsai, F.J.; Wang, J.Y.; Lin, C.H.; Chen, C.Y.; Kiang, Y.W.; Yang, C.C. Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor. Appl. Phys. Lett. 2009, 94, 88–91. [Google Scholar] [CrossRef]
- Fadil, A.; Ou, Y.; Iida, D.; Kamiyama, S.; Petersen, P.M.; Ou, H. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters. Nanoscale 2016, 8, 16340–16348. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, M.F.; Peng, Y.; Xiao, K.; Yao, H.; Wang, Y.; Sun, W. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances. Nanomaterials 2021, 11, 1132. https://doi.org/10.3390/nano11051132
Saleem MF, Peng Y, Xiao K, Yao H, Wang Y, Sun W. Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances. Nanomaterials. 2021; 11(5):1132. https://doi.org/10.3390/nano11051132
Chicago/Turabian StyleSaleem, Muhammad Farooq, Yi Peng, Kai Xiao, Huilu Yao, Yukun Wang, and Wenhong Sun. 2021. "Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances" Nanomaterials 11, no. 5: 1132. https://doi.org/10.3390/nano11051132
APA StyleSaleem, M. F., Peng, Y., Xiao, K., Yao, H., Wang, Y., & Sun, W. (2021). Factors Affecting Surface Plasmon Coupling of Quantum Wells in Nitride-Based LEDs: A Review of the Recent Advances. Nanomaterials, 11(5), 1132. https://doi.org/10.3390/nano11051132