Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Structure
3.2. Magnetic Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thostenson, E.T.; Chou, T.-W. Microwave processing: Fundamentals and applications. Compos. Part A 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358–1374. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef]
- Beak, H.; Kashimura, K.; Fujii, T.; Tsubaki, S.; Wada, Y.; Fujikawa, S.; Sato, T.; Uozumi, Y.; Yamada, Y.M.A. Production of Bio Hydrofined Diesel, Jet Fuel, and Carbon Monoxide from Fatty Acids Using a Silicon Nanowire Array-Supported Rhodium Nanoparticle Catalyst under Microwave Conditions. ACS Catal. 2020, 10, 2148–2156. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Egorov, S.V.; Eremeev, A.G.; Kholoptsev, V.V.; Plotnikov, I.V.; Sorokin, A.A. Ultra-rapid microwave sintering employing thermal instability and resonant absorption. J. Mater. Res. 2019, 34, 2620–2634. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Morsi, M.M.; Seifert, H.J. Crystallization of two rare-earth aluminosilicate glass-ceramics using conventional and microwave heat-treatments. J. Alloys Compd. 2019, 797, 45–57. [Google Scholar] [CrossRef]
- Ano, T.; Tsubaki, S.; Liu, A.; Matsuhisa, M.; Fujii, S.; Motokura, K.; Chun, W.-J.; Wada, Y. Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS. Commun. Chem. 2020, 3, 86. [Google Scholar] [CrossRef]
- Matsuhisa, M.; Tsubaki, S.; Kishimoto, F.; Fujii, S.; Hirano, I.; Horibe, M.; Suzuki, E.; Shimizu, R.; Hitosugi, T.; Wada, Y. Hole Accumulation at the Grain Boundary Enhances Water Oxidation at α-Fe2O3 Electrodes under a Microwave Electric Field. J. Phys. Chem. C 2020, 124, 7749–7759. [Google Scholar] [CrossRef]
- Vaidhyanathan, B.; Gangi, M.; Rao, K.J. Microwave-assisted selective deoxygenation of layer- and chain-containing oxides. J. Mater. Chem. 1996, 6, 391–394. [Google Scholar] [CrossRef]
- Fukushima, J.; Takayama, S.; Goto, H.; Sato, M.; Takizawa, H. In situ analysis of reaction kinetics of reduction promotion of NiMn2O4 under microwave H-field irradiation. Phys. Chem. Chem. Phys. 2017, 19, 17904–17908. [Google Scholar] [CrossRef] [PubMed]
- Chikami, H.; Fukushima, J.; Hayashi, Y.; Takizawa, H. Low-Temperature Synthesis of Aluminum Nitride from Transition Alumina by Microwave Processing. J. Am. Ceram. Soc. 2016, 99, 3540–3545. [Google Scholar] [CrossRef]
- Iwabuchi, Y.; Fukushima, J.; Sakuma, N.; Ito, M.; Shimo, Y.; Kishimoto, H.; Takizawa, H. Oriented texture formation of crystallized Nd2Fe14B through a microwave heating process. J. Alloys Compd. 2016, 685, 566–570. [Google Scholar] [CrossRef]
- Nushiro, K.; Kikuchi, S.; Yamada, T. Microwave effect on catalytic enantioselective Claisen rearrangement. Chem. Commun. 2013, 49, 8371–8373. [Google Scholar] [CrossRef] [PubMed]
- Rybakov, K.I.; Olevsky, E.A.; Semenov, V.E. The microwave ponderomotive effect on ceramic sintering. Scr. Mater. 2012, 66, 1049–1052. [Google Scholar] [CrossRef]
- Dudley, G.B.; Richert, R.; Stiegman, A.E. On the existence of and mechanism for microwave specific reaction rate enhancement. Chem. Sci. 2015, 6, 2144–2152. [Google Scholar] [CrossRef]
- Yanagawa, A.; Kajiwara, A.; Nakajima, H.; Quéméner, E.D.-L.; Steyer, J.-P.; Lewis, V.; Mitani, T. Physical assessments of termites (Termitidae) under 2.45 GHz microwave irradiation. Sci. Rep. 2020, 10, 5197. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Takizawa, H.; Uheda, K.; Endo, T. Microwave Synthesis of X-rays Amorphous Ferrites and the Magnetic Properties. Proc. Int. Conf. Microw. Chem. 2000, 30, 335–338. [Google Scholar]
- Takizawa, H.; Iwasaki, M.; Kimura, T.; Fujiwara, A.; Haze, N.; Endo, T. Synthesis of Inorganic Materials by 28 GHz Microwave Irradiation. Trans. Mater. Res. Soc. Jpn. 2002, 27, 51–54. [Google Scholar]
- Takizawa, H. Survey of new materials by solid state synthesis under external fields: High-pressure synthesis and microwave processing of inorganic materials. J. Ceram. Soc. Jpn. 2018, 126, 424–433. [Google Scholar] [CrossRef]
- Roy, R.; Peelamedu, R.; Hurtt, L.; Cheng, J.; Agrawal, D. Definitive experimental evidence for Microwave Effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds. Mater. Res. Innov. 2002, 6, 128–140. [Google Scholar] [CrossRef]
- Peelamedu, R.; Roy, R.; Agrawal, D.; Drawl, W. Field decrystallization and structural modifications of highly doped silicon in a 2.45-GHz microwave single-mode cavity. J. Mater. Res. 2004, 19, 1599–1602. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Dsouza, K.; Vashaee, D. Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect. Appl. Phys. Lett. 2018, 112, 093193. [Google Scholar] [CrossRef]
- Roy, R.; Fang, Y.; Cheng, J.; Agrawal, D.K. Decrystallizing Solid Crystalline Titania, Without Melting, Using Microwave Magnetic Fields. J. Am. Ceram. Soc. 2005, 88, 1640–1642. [Google Scholar] [CrossRef]
- Takayama, S.; Kakurai, K.; Takeda, M.; Matsubara, A.; Nishihara, Y.; Nishijo, J.; Sano, S.; Nishi, N.; Sato, M. Investigation of crystal structure formation under microwave heating. Nucl. Instrum. Methods Phys. Res. A 2009, 600, 246–249. [Google Scholar] [CrossRef]
- Yoshikawa, N.; Cao, Z.; Louzguin, D.; Xie, G.; Taniguchi, S. Micro/nanostructure observation of microwave-heated Fe3O4. J. Mater. Res. 2009, 24, 1741–1747. [Google Scholar] [CrossRef]
- Takeuchi, T.; Fukushima, J.; Hayashi, Y.; Takizawa, H. Synthesis of Ti4O7 Nanoparticles by Carbothermal Reduction Using Microwave Rapid Heating. Catalysts 2017, 7, 65. [Google Scholar] [CrossRef]
- Yamamoto, S.; Ruwan, G.; Tamada, Y.; Kohara, K.; Kusano, Y.; Sasano, T.; Ohno, K.; Tsujii, Y.; Kageyama, H.; Ono, T.; et al. Transformation of Nano-to Mesosized Iron Oxide Cores to α-Fe within Organic Shells Preserved Intact. Chem. Mater. 2011, 23, 1564–1569. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, S.G.; Park, J.-G.; Hyeon, T. Size Dependence of Metal−Insulator Transition in Stoichiometric Fe3O4 Nanocrystals. Nano Lett. 2015, 15, 4337–4342. [Google Scholar] [CrossRef]
- Tanaka, M.; Kono, H.; Maruyama, K. Selective heating mechanism of magnetic metal oxides by a microwave magnetic field. Phys. Rev. B 2009, 79, 104420. [Google Scholar] [CrossRef]
- Fukushima, J.; Kashimura, K.; Takayama, S.; Sato, M. Microwave-energy Distribution for Reduction and Decrystallization of Titanium Oxides. Chem. Lett. 2012, 41, 39–41. [Google Scholar] [CrossRef]
- Takayama, S.; Fukushima, J.; Nishijo, J.; Saito, M.; Sano, S.; Sato, M. Sintering of Soft Magnetic Material under Microwave Magnetic Field. Phys. Res. Int. 2012, 2012, 165849. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchida, T.; Fukushima, J.; Takizawa, H. Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation. Nanomaterials 2021, 11, 984. https://doi.org/10.3390/nano11040984
Tsuchida T, Fukushima J, Takizawa H. Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation. Nanomaterials. 2021; 11(4):984. https://doi.org/10.3390/nano11040984
Chicago/Turabian StyleTsuchida, Takayuki, Jun Fukushima, and Hirotsugu Takizawa. 2021. "Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation" Nanomaterials 11, no. 4: 984. https://doi.org/10.3390/nano11040984
APA StyleTsuchida, T., Fukushima, J., & Takizawa, H. (2021). Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation. Nanomaterials, 11(4), 984. https://doi.org/10.3390/nano11040984