Crystallization Kinetics in BaTiO3 Synthesis from Hydrate Precursors via Microwave-Assisted Heat Treatment
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of BaTiO3 Powders
2.2. Analysis of the Crystal Phase and Crystallization Activation Energy
2.3. Analysis of Charged Radicals in MWH
3. Results and Discussion
3.1. Structural Features of Synthesized Powders
3.2. Activation Energy Estimation for BaTiO3 Phase Formation
3.3. Real-Time Measurements of Charge Fluxes during MWH
3.4. Chemical Features of Samples after Heat Treatment
3.5. Determination of Mobile Charged Radicals in MWH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raveendran, A.; Sebastian, M.T.; Raman, S. Applications of Microwave Materials: A Review. J. Electron. Mater. 2019, 48, 2601–2634. [Google Scholar] [CrossRef] [Green Version]
- Vrba, J. Medical Applications of Microwaves. Electromagn. Biol. Med. 2005, 24, 441–448. [Google Scholar] [CrossRef]
- Agrawal, D.K. Microwave Processing of Ceramics. Curr. Opin. Solid State Mater. Sci. 1998, 3, 480–485. [Google Scholar] [CrossRef]
- Thirumalai, S.; Shanmugavel, B.P. Microwave Assisted Synthesis and Characterization of Barium Titanate Nanoparticles for Multi Layered Ceramic Capacitor Applications. J. Microw. Power Electromagn. Energy 2011, 45, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Luo, H.; Gao, J.; Guo, L.; Yang, J. Microwave Hydrothermal Synthesis of Barium Titanate Powders. Mater. Lett. 2006, 60, 3011–3014. [Google Scholar] [CrossRef]
- Thridandapani, R.R.; Folz, D.C.; Clark, D.E. Estimation of Activation Energies for Sintering 8 Mol% Yttria-Zirconia Using Conventional and Microwave Heating. Int. J. Appl. Ceram. Technol. 2014, 11, 938–945. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, R.; Veronesi, P.; Leonelli, C. A Review on Combustion Synthesis Intensification by Means of Microwave Energy. Chem. Eng. Process. 2013, 71, 2–18. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing. Compos. Part A 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Luo, T.; Xu, L.; Peng, J.; Zhang, L.; Xia, Y.; Ju, S.; Liu, J.; Gang, R.; Wang, Z. Efficient Preparation of Si3 N4 by Microwave Treatment of Solar-Grade Waste Silicon Powder. ACS Omega 2020, 5, 5834–5843. [Google Scholar] [CrossRef] [Green Version]
- Benavente, R.; Salvador, M.D.; Centeno, A.; Alonso, B.; Zurutuza, A.; Borrell, A. Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites. Materials 2020, 13, 1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karayannis, V.G. Microwave Sintering of Ceramic Materials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012068. [Google Scholar] [CrossRef]
- Tian, L.; Nan, J.; Wang, H.; Shen, C. Effect of Microwave Sintering on the Properties of 0.95(Ca0.88Sr0.12)TiO3–0.05(Bi0.5Na0.5)TiO3 Ceramics. Materials 2019, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Agranovich, D.; Ishai, P.B.; Katz, G.; Bezman, D.; Feldman, Y. Microwave Dielectric Spectroscopy Study of Water Dynamics in Normal and Contaminated Raw Bovine Milk. Colloids Surf. B 2017, 154, 391–396. [Google Scholar] [CrossRef]
- Yun, H.-S.; Yun, B.-G.; Lee, H.-M.; Jeong, D.-Y.; Lee, W.-I.; Cho, N.-H. Low-Temperature Synthesis of Nanoscale BaTiO3 Powders via Microwave-Assisted Solid-State Reaction. SN Appl. Sci. 2019, 1, 1366. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High Surface Energy Enhances Cell Response to Titanium Substrate Microstructure. J. Biomed. Mater. Res. 2005, 74A, 49–58. [Google Scholar] [CrossRef]
- Ashiri, R. On the Solid-State Formation of BaTiO3 Nanocrystals from Mechanically Activated BaCO3 and TiO2 Powders: Innovative Mechanochemical Processing, the Mechanism Involved, and Phase and Nanostructure Evolutions. RSC Adv. 2016, 6, 17138–17150. [Google Scholar] [CrossRef]
- Berbenni, V.; Marini, A.; Bruni, G. Effect of Mechanical Milling on Solid State Formation of BaTiO3 from BaCO3–TiO2 (rutile) Mixtures. Thermochim. Acta 2001, 374, 151–158. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, P.-Y.; Chou, C.-C.; Chen, C.-S. Microwave Sintering and Grain Growth Behavior of Nano-Grained BaTiO3 Materials. Ceram. Int. 2012, 38, S117–S120. [Google Scholar] [CrossRef]
- Muthuramalingam, M.; Jain Ruth, D.E.; Veera Gajendra Babu, M.; Ponpandian, N.; Mangalaraj, D.; Sundarakannan, B. Isothermal Grain Growth and Effect of Grain Size on Piezoelectric Constant of Na0.5Bi0.5TiO3 Ceramics. Scr. Mater. 2016, 112, 58–61. [Google Scholar] [CrossRef]
- Kreyszig, E. Advanced Engineering Mathematics, 8th ed.; John Wiley & Sons Pte Ltd.: Singapore, 2005. [Google Scholar]
- Coble, R.L. Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts. J. Appl. Phys. 1961, 32, 793–799. [Google Scholar]
- Rupp, J.L.M.; Infortuna, A.; Gauckler, L.J. Microstrain and Self-Limited Grain Growth in Nanocrystalline Ceria Ceramics. Acta Mater. 2006, 54, 1721–1730. [Google Scholar] [CrossRef]
- Iverson, R.B.; Reif, R. Recrystallization of Amorphized Polycrystalline Silicon Films on SiO2: Temperature Dependence of the Crystallization Parameters. J. Appl. Phys. 1987, 62, 1675–1681. [Google Scholar] [CrossRef]
- Freeman, S.; Booske, J.; Cooper, R.; Meng, B. Microwave Radiation Effects on Ionic Current in Ionic Crystalline Solids. Mater. Res. Soc. Symp. Proc. 1994, 347, 479–485. [Google Scholar] [CrossRef]
- Booske, J.H.; Cooper, R.F.; Freeman, S.A.; Rybakov, K.I.; Semenov, V.E. Microwave Ponderomotive Forces in Solid-State Ionic Plasmas. Phys. Plasmas 1998, 5, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.C. The Lorentz Correction in Barium Titanate. Phys. Rev. 1950, 78, 748–761. [Google Scholar] [CrossRef]
- Sedlmair, C.; Seshan, K.; Jentys, A.; Lercher, J.A. Elementary Steps of NOx Adsorption and Surface Reaction on a Commercial Storage–Reduction Catalyst. J. Catal. 2003, 214, 308–316. [Google Scholar] [CrossRef]
- Kappadan, S.; Gebreab, T.W.; Thomas, S.; Kalarikkal, N. Tetragonal BaTiO3 Nanoparticles: An Efficient Photocatalyst for the Degradation of Organic Pollutants. Mater. Sci. Semicond. Process. 2016, 51, 42–47. [Google Scholar] [CrossRef]
- Roedel, E.; Urakawa, A.; Kureti, S.; Baiker, A. On the Local Sensitivity of Different IR Techniques: Ba Species Relevant in NOx Storage-Reduction. Phys. Chem. Chem. Phys. 2008, 10, 6190–6198. [Google Scholar] [CrossRef]
- Busca, G.; Buscaglia, V.; Leoni, M.; Nanni, P. Solid-State and Surface Spectroscopic Characterization of BaTiO3 Fine Powders. Chem. Mater. 1994, 6, 955–961. [Google Scholar] [CrossRef]
- Yates, D.J.C. Infrared Studies of the Surface Hydroxyl Groups on Titanium Dioxide, and of the Chemisorption of Carbon Monoxide and Carbon Dioxide. J. Phys. Chem. 1961, 65, 746–753. [Google Scholar] [CrossRef]
- De Marzi, L.; Monaco, A.; De Lapuente, J.; Ramos, D.; Borras, M.; Di Gioacchino, M.; Santucci, S.; Poma, A. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. Int. J. Mol. Sci. 2013, 14, 3065–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q. The Dielectric and Photochromic Properties of Defect-rich BaTiO3 Microcrystallites Synthesized from Ti2O Mater. Sci. Eng. B 2012, 177, 639–644. [Google Scholar] [CrossRef]
- Lin, T.-C.; Seshadri, G.; Kelber, J.A. A Consistent Method for Quantitative XPS Peak Analysis of Thin Oxide Films on Clean Polycrystalline Iron Surfaces. Appl. Surf. Sci. 1997, 119, 83–92. [Google Scholar] [CrossRef]
- Hanawa, T. Transition of Surface Modification of Titanium for Medical and Dental Use. In Titanium in Medical and Dental Applications; Froes, F.H., Qian, M., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 95–113. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, H.-S.; Yun, B.-G.; Shin, S.-Y.; Jeong, D.-Y.; Cho, N.-H. Crystallization Kinetics in BaTiO3 Synthesis from Hydrate Precursors via Microwave-Assisted Heat Treatment. Nanomaterials 2021, 11, 754. https://doi.org/10.3390/nano11030754
Yun H-S, Yun B-G, Shin S-Y, Jeong D-Y, Cho N-H. Crystallization Kinetics in BaTiO3 Synthesis from Hydrate Precursors via Microwave-Assisted Heat Treatment. Nanomaterials. 2021; 11(3):754. https://doi.org/10.3390/nano11030754
Chicago/Turabian StyleYun, Han-Sol, Byeong-Gyu Yun, So-Young Shin, Dae-Yong Jeong, and Nam-Hee Cho. 2021. "Crystallization Kinetics in BaTiO3 Synthesis from Hydrate Precursors via Microwave-Assisted Heat Treatment" Nanomaterials 11, no. 3: 754. https://doi.org/10.3390/nano11030754
APA StyleYun, H.-S., Yun, B.-G., Shin, S.-Y., Jeong, D.-Y., & Cho, N.-H. (2021). Crystallization Kinetics in BaTiO3 Synthesis from Hydrate Precursors via Microwave-Assisted Heat Treatment. Nanomaterials, 11(3), 754. https://doi.org/10.3390/nano11030754