Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Microscopy for Morphological Characterization
2.3. Optical Spectroscopy
3. Results and Discussion
3.1. Morphology of Droplet Epitaxial Quantum Dots on (311)A, (001), and (111)A Surfaces
3.2. s-Shell Excitons in Droplet Epitaxial Quantum Dots
3.3. Binding Energy of s-Shell Excitons
3.4. Electron-Hole Spin Interactions, Fine Structure Splitting
3.5. Heavy-Hole, Light-Hole Mixing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PL | photoluminescence |
QD | quantum dot |
FSS | fine structure splitting |
X | neutral exciton |
X | positive charged exciton |
XX | neutral biexciton |
X | negative charged exciton |
FWHM | full width at half maximum |
hh | heavy hole |
lh | light hole |
e | electron |
References
- Mantovani, V.; Sanguinetti, S.; Guzzi, M.; Grilli, E.; Gurioli, M.; Watanabe, K.; Koguchi, N. Low density GaAs/AlGaAs quantum dots grown by modified droplet epitaxy. J. Appl. Phys. 2004, 96, 4416–4420. [Google Scholar] [CrossRef]
- Wang, Z.M.; Holmes, K.; Mazur, Y.I.; Ramsey, K.A.; Salamo, G.J. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy. Nanoscale Res. Lett. 2006, 1, 57. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, Z.M. Droplet epitaxy for advanced optoelectronic materials and devices. J. Phys. D: Appl. Phys. 2014, 47, 173001. [Google Scholar] [CrossRef]
- Gurioli, M.; Wang, Z.; Rastelli, A.; Kuroda, T.; Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 2019, 18, 799–810. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liang, B.; Sablon, K.; Salamo, G. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs (100). Appl. Phys. Lett. 2007, 90, 113120. [Google Scholar] [CrossRef]
- Stemmann, A.; Heyn, C.; Köppen, T.; Kipp, T.; Hansen, W. Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces. Appl. Phys. Lett. 2008, 93, 123108. [Google Scholar] [CrossRef]
- Heyn, C.; Stemmann, A.; Hansen, W. Dynamics of self-assembled droplet etching. Appl. Phys. Lett. 2009, 95, 173110. [Google Scholar] [CrossRef]
- Heyn, C. Kinetic model of local droplet etching. Phys. Rev. B 2011, 83, 165302. [Google Scholar] [CrossRef]
- Atkinson, P.; Zallo, E.; Schmidt, O. Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self-assembled nanoholes. J. Appl. Phys. 2012, 112, 054303. [Google Scholar] [CrossRef]
- Huo, Y.; Rastelli, A.; Schmidt, O. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett. 2013, 102, 152105. [Google Scholar] [CrossRef] [Green Version]
- Fuster, D.; González, Y.; González, L. Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs (001). Nanoscale Res. Lett. 2014, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyn, C.; Bartsch, T.; Sanguinetti, S.; Jesson, D.; Hansen, W. Dynamics of mass transport during nanohole drilling by local droplet etching. Nanoscale Res. Lett. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J.S.; Schmidt, O.G.; Rastelli, A.; Trotta, R. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Bietti, S.; Khalili, A.; Costanzo, M.; Cappelluti, F.; Esposito, L.; Somaschini, C.; Fedorov, A.; Tsukamoto, S.; Rauter, P.; et al. Droplet epitaxy quantum dot based infrared photodetectors. Nanotechnology 2020, 31, 245203. [Google Scholar] [CrossRef] [PubMed]
- Mano, T.; Kuroda, T.; Yamagiwa, M.; Kido, G.; Sakoda, K.; Koguchi, N. Lasing in GaAs/AlGaAs self-assembled quantum dots. Appl. Phys. Lett. 2006, 89, 183102. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Mitsuishi, K.; Yamagiwa, M.; Guo, X.J.; Furuya, K.; Sakoda, K.; Koguchi, N. Ring-shaped GaAs quantum dot laser grown by droplet epitaxy: Effects of post-growth annealing on structural and optical properties. J. Cryst. Growth 2007, 301, 740–743. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Mitsuishi, K.; Nakayama, Y.; Noda, T.; Sakoda, K. GaAs/AlGaAs quantum dot laser fabricated on GaAs (311) A substrate by droplet epitaxy. Appl. Phys. Lett. 2008, 93, 203110. [Google Scholar] [CrossRef]
- Jo, M.; Mano, T.; Sakoda, K. Lasing in ultra-narrow emission from GaAs quantum dots coupled with a two-dimensional layer. Nanotechnology 2011, 22, 335201. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Mano, T.; Sakoda, K. Electrical Lasing in GaAs Quantum Dots Grown by Droplet Epitaxy; Advances in Optical Materials; Optical Society of America: Washington, DC, USA, 2012; p. ITh5B-6. [Google Scholar]
- Kuroda, T.; Abbarchi, M.; Mano, T.; Watanabe, K.; Yamagiwa, M.; Kuroda, K.; Sakoda, K.; Kido, G.; Koguchi, N.; Mastrandrea, C.; et al. Photon correlation in GaAs self-assembled quantum dots. Appl. Phys. Express 2008, 1, 042001. [Google Scholar] [CrossRef] [Green Version]
- Abbarchi, M.; Mastrandrea, C.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Kuroda, T.; Koguchi, N.; Sakoda, K.; Gurioli, M. Photon antibunching in double quantum ring structures. Phys. Rev. B 2009, 79, 085308. [Google Scholar] [CrossRef]
- Abbarchi, M.; Kuroda, T.; Mano, T.; Gurioli, M.; Sakoda, K. Bunched photon statistics of the spectrally diffusive photoluminescence of single self-assembled GaAs quantum dots. Phys. Rev. B 2012, 86, 115330. [Google Scholar] [CrossRef]
- Benyoucef, M.; Zuerbig, V.; Reithmaier, J.P.; Kroh, T.; Schell, A.W.; Aichele, T.; Benson, O. Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature. Nanoscale Res. Lett. 2012, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kumano, H.; Nakajima, H.; Kuroda, T.; Mano, T.; Sakoda, K.; Suemune, I. Nonlocal biphoton generation in a Werner state from a single semiconductor quantum dot. Phys. Rev. B 2015, 91, 205437. [Google Scholar] [CrossRef] [Green Version]
- Kumano, H.; Harada, T.; Suemune, I.; Nakajima, H.; Kuroda, T.; Mano, T.; Sakoda, K.; Odashima, S.; Sasakura, H. Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber. Appl. Phys. Express 2016, 9, 032801. [Google Scholar] [CrossRef]
- Kuroda, T.; Mano, T.; Ha, N.; Nakajima, H.; Kumano, H.; Urbaszek, B.; Jo, M.; Abbarchi, M.; Sakuma, Y.; Sakoda, K.; et al. Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 2013, 88, 041306. [Google Scholar] [CrossRef] [Green Version]
- Basso Basset, F.; Bietti, S.; Reindl, M.; Esposito, L.; Fedorov, A.; Huber, D.; Rastelli, A.; Bonera, E.; Trotta, R.; Sanguinetti, S. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy. Nano Lett. 2018, 18, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, H.Y.; Chou, Y.L.; Cheng, S.J. Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Ha, N.; Mano, T.; Kuroda, T.; Sakuma, Y.; Sakoda, K. Current-injection quantum-entangled-pair emitter using droplet epitaxial quantum dots on GaAs (111) A. Appl. Phys. Lett. 2019, 115, 083106. [Google Scholar] [CrossRef]
- Basset, F.B.; Rota, M.B.; Schimpf, C.; Tedeschi, D.; Zeuner, K.D.; da Silva, S.C.; Reindl, M.; Zwiller, V.; Jöns, K.D.; Rastelli, A.; et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 2019, 123, 160501. [Google Scholar] [CrossRef] [Green Version]
- Basset, F.B.; Valeri, M.; Roccia, E.; Muredda, V.; Poderini, D.; Neuwirth, J.; Spagnolo, N.; Rota, M.B.; Carvacho, G.; Sciarrino, F.; et al. Quantum key distribution with entangled photons generated on-demand by a quantum dot. arXiv 2020, arXiv:2007.12727. [Google Scholar]
- Basset, F.B.; Salusti, F.; Schweickert, L.; Rota, M.B.; Tedeschi, D.; da Silva, S.F.C.; Roccia, E.; Zwiller, V.; Jöns, K.D.; Rastelli, A.; et al. Quantum Teleportation with Imperfect Quantum Dots. arXiv 2020, arXiv:2006.02733. [Google Scholar]
- Watanabe, K.; Koguchi, N.; Gotoh, Y. Fabrication of GaAs quantum dots by modified droplet epitaxy. Jpn. J. Appl. Phys. 2000, 39, L79. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Mitsuishi, K.; Noda, T.; Sakoda, K. High-density GaAs/AlGaAs quantum dots formed on GaAs (3 1 1) A substrates by droplet epitaxy. J. Cryst. Growth 2009, 311, 1828–1831. [Google Scholar] [CrossRef]
- Bietti, S.; Bocquel, J.; Adorno, S.; Mano, T.; Keizer, J.G.; Koenraad, P.M.; Sanguinetti, S. Precise shape engineering of epitaxial quantum dots by growth kinetics. Phys. Rev. B 2015, 92, 075425. [Google Scholar] [CrossRef] [Green Version]
- Yamagiwa, M.; Mano, T.; Kuroda, T.; Tateno, T.; Sakoda, K.; Kido, G.; Koguchi, N.; Minami, F. Self-assembly of laterally aligned GaAs quantum dot pairs. Appl. Phys. Lett. 2006, 89, 113115. [Google Scholar] [CrossRef] [Green Version]
- Sablon, K.; Lee, J.; Wang, Z.M.; Shultz, J.; Salamo, G. Configuration control of quantum dot molecules by droplet epitaxy. Appl. Phys. Lett. 2008, 92, 203106. [Google Scholar] [CrossRef]
- Mano, T.; Koguchi, N. Nanometer-scale GaAs ring structure grown by droplet epitaxy. J. Cryst. Growth 2005, 278, 108–112. [Google Scholar] [CrossRef]
- Mano, T.; Kuroda, T.; Sanguinetti, S.; Ochiai, T.; Tateno, T.; Kim, J.; Noda, T.; Kawabe, M.; Sakoda, K.; Kido, G.; et al. Self-assembly of concentric quantum double rings. Nano Lett. 2005, 5, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Somaschini, C.; Bietti, S.; Koguchi, N.; Sanguinetti, S. Fabrication of multiple concentric nanoring structures. Nano Lett. 2009, 9, 3419–3424. [Google Scholar] [CrossRef] [PubMed]
- Shwartz, N.L.; Vasilenko, M.A.; Nastovjak, A.G.; Neizvestny, I.G. Concentric GaAs nanorings formation by droplet epitaxy—Monte Carlo simulation. Comput. Mater. Sci. 2018, 141, 91–100. [Google Scholar] [CrossRef]
- Sanguinetti, S.; Mano, T.; Kuroda, T. Self-assembled semiconductor quantum ring complexes by droplet epitaxy: Growth and physical properties. In Physics of Quantum Rings; Springer: Berlin/Heidelberg, Germany, 2018; pp. 187–228. [Google Scholar]
- Heyn, C.; Zocher, M.; Hansen, W. Functionalization of Droplet Etching for Quantum Rings. In Physics of Quantum Rings; Springer: Berlin/Heidelberg, Germany, 2018; pp. 139–162. [Google Scholar]
- Somaschini, C.; Bietti, S.; Sanguinetti, S.; Koguchi, N.; Fedorov, A. Self-assembled GaAs/AlGaAs coupled quantum ring-disk structures by droplet epitaxy. Nanotechnology 2010, 21, 125601. [Google Scholar] [CrossRef] [PubMed]
- Somaschini, C.; Bietti, S.; Koguchi, N.; Sanguinetti, S. Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology 2011, 22, 185602. [Google Scholar] [CrossRef] [PubMed]
- Elborg, M.; Noda, T.; Mano, T.; Kuroda, T.; Yao, Y.; Sakuma, Y.; Sakoda, K. Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy. J. Cryst. Growth 2017, 477, 239–242. [Google Scholar] [CrossRef]
- Jo, M.; Keizer, J.G.; Mano, T.; Koenraad, P.M.; Sakoda, K. Self-assembly of GaAs quantum wires grown on (311) A substrates by droplet epitaxy. Appl. Phys. Express 2011, 4, 055501. [Google Scholar] [CrossRef]
- Sanguinetti, S.; Watanabe, K.; Tateno, T.; Wakaki, M.; Koguchi, N.; Kuroda, T.; Minami, F.; Gurioli, M. Role of the wetting layer in the carrier relaxation in quantum dots. Appl. Phys. Lett. 2002, 81, 613–615. [Google Scholar] [CrossRef]
- Mano, T.; Abbarchi, M.; Kuroda, T.; McSkimming, B.; Ohtake, A.; Mitsuishi, K.; Sakoda, K. Self-assembly of symmetric GaAs quantum dots on (111) A substrates: Suppression of fine-structure splitting. Appl. Phys. Express 2010, 3, 065203. [Google Scholar] [CrossRef]
- Mano, T.; Noda, T.; Kuroda, T.; Sanguinetti, S.; Sakoda, K. Self-assembled GaAs quantum dots coupled with GaAs wetting layer grown on GaAs (311) A by droplet epitaxy. Phys. Status Solidi C 2011, 8, 257–259. [Google Scholar] [CrossRef]
- Keizer, J.; Jo, M.; Mano, T.; Noda, T.; Sakoda, K.; Koenraad, P. Structural atomic-scale analysis of GaAs/AlGaAs quantum wires and quantum dots grown by droplet epitaxy on a (311) A substrate. Appl. Phys. Lett. 2011, 98, 193112. [Google Scholar] [CrossRef]
- Keizer, J.; Koenraad, P. Atomic-scale analysis of self-assembled quantum dots by cross-sectionalscanning, tunneling microscopy, and atom probe tomography. In Quantum Dots: Optics, Electron Transport and Future Applications; Cambridge University Press: Cambridge, MA, USA, 2012; pp. 41–60. [Google Scholar]
- Zuerbig, V.; Bugaew, N.; Reithmaier, J.P.; Kozub, M.; Musiał, A.; Sęk, G.; Misiewicz, J. Growth-Temperature Dependence of Wetting Layer Formation in High Density InGaAs/GaAs Quantum Dot Structures Grown by Droplet Epitaxy. Jpn. J. Appl. Phys. 2012, 51, 085501. [Google Scholar] [CrossRef]
- Shahzadeh, M.; Sabaeian, M. Wetting layer-assisted modification of in-plane-polarized transitions in strain-free GaAs/AlGaAs quantum dots. Superlattices Microstruct. 2014, 75, 514–522. [Google Scholar] [CrossRef]
- Skiba-Szymanska, J.; Stevenson, R.M.; Varnava, C.; Felle, M.; Huwer, J.; Müller, T.; Bennett, A.J.; Lee, J.P.; Farrer, I.; Krysa, A.B.; et al. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Phys. Rev. Appl. 2017, 8, 014013. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, A.; Ha, N.; Mano, T. Extremely high-and low-density of Ga droplets on GaAs {111} A, B: Surface-polarity dependence. Cryst. Growth Des. 2015, 15, 485–488. [Google Scholar] [CrossRef]
- Sautter, K.E.; Vallejo, K.D.; Simmonds, P.J. Strain-driven quantum dot self-assembly by molecular beam epitaxy. J. Appl. Phys. 2020, 128, 031101. [Google Scholar] [CrossRef]
- Jo, M.; Mano, T.; Abbarchi, M.; Kuroda, T.; Sakuma, Y.; Sakoda, K. Self-limiting growth of hexagonal and triangular quantum dots on (111) A. Cryst. Growth Des. 2012, 12, 1411–1415. [Google Scholar] [CrossRef]
- Liu, X.; Ha, N.; Nakajima, H.; Mano, T.; Kuroda, T.; Urbaszek, B.; Kumano, H.; Suemune, I.; Sakuma, Y.; Sakoda, K. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111) A surfaces by droplet epitaxy. Phys. Rev. B 2014, 90, 081301. [Google Scholar] [CrossRef] [Green Version]
- Bouet, L.; Vidal, M.; Mano, T.; Ha, N.; Kuroda, T.; Durnev, M.; Glazov, M.; Ivchenko, E.; Marie, X.; Amand, T.; et al. Charge tuning in [111] grown GaAs droplet quantum dots. Appl. Phys. Lett. 2014, 105, 082111. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.; Mano, T.; Wu, Y.N.; Ou, Y.W.; Cheng, S.J.; Sakuma, Y.; Sakoda, K.; Kuroda, T. Wavelength extension beyond 1.5 μm in symmetric InAs quantum dots grown on InP (111) A using droplet epitaxy. Appl. Phys. Express 2016, 9, 101201. [Google Scholar] [CrossRef] [Green Version]
- Mano, T.; Mitsuishi, K.; Ha, N.; Ohtake, A.; Castellano, A.; Sanguinetti, S.; Noda, T.; Sakuma, Y.; Kuroda, T.; Sakoda, K. Growth of metamorphic InGaAs on GaAs (111) a: Counteracting lattice mismatch by inserting a thin InAs interlayer. Cryst. Growth Des. 2016, 16, 5412–5417. [Google Scholar] [CrossRef]
- Trapp, A.; Reuter, D. Formation of self-assembled GaAs quantum dots via droplet epitaxy on misoriented GaAs (111) B substrates. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2018, 36, 02D106. [Google Scholar] [CrossRef]
- Ha, N.; Mano, T.; Dubos, S.; Kuroda, T.; Sakuma, Y.; Sakoda, K. Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55 μm. Appl. Phys. Express 2020, 13, 025002. [Google Scholar] [CrossRef]
- Bietti, S.; Basset, F.B.; Tuktamyshev, A.; Bonera, E.; Fedorov, A.; Sanguinetti, S. High–temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Abbarchi, M.; Kuroda, T.; Mano, T.; Sakoda, K.; Mastrandrea, C.A.; Vinattieri, A.; Gurioli, M.; Tsuchiya, T. Energy renormalization of exciton complexes in GaAs quantum dots. Phys. Rev. B 2010, 82, 201301. [Google Scholar] [CrossRef] [Green Version]
- Kawazu, T.; Noda, T.; Mano, T.; Jo, M.; Sakaki, H. Effects of antimony flux on morphology and photoluminescence spectra of GaSb quantum dots formed on GaAs by droplet epitaxy. J. Nonlinear Opt. Phys. Mater. 2010, 19, 819–826. [Google Scholar] [CrossRef]
- Saidi, F.; Bouzaiene, L.; Sfaxi, L.; Maaref, H. Growth conditions effects on optical properties of InAs quantum dots grown by molecular beam epitaxy on GaAs (1 1 3) A substrate. J. Lumin. 2012, 132, 289–292. [Google Scholar] [CrossRef]
- Abbarchi, M.; Mano, T.; Kuroda, T.; Sakoda, K. Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311) A-Oriented Substrates. Nanomaterials 2020, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, S.; Mano, T.; Gerosa, A.; Somaschini, C.; Bietti, S.; Koguchi, N.; Grilli, E.; Guzzi, M.; Gurioli, M.; Abbarchi, M. Rapid thermal annealing effects on self-assembled quantum dot and quantum ring structures. J. Appl. Phys. 2008, 104, 113519. [Google Scholar] [CrossRef]
- Mano, T.; Abbarchi, M.; Kuroda, T.; Mastrandrea, C.; Vinattieri, A.; Sanguinetti, S.; Sakoda, K.; Gurioli, M. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology 2009, 20, 395601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keizer, J.; Bocquel, J.; Koenraad, P.; Mano, T.; Noda, T.; Sakoda, K. Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 2010, 96, 062101. [Google Scholar] [CrossRef]
- Abbarchi, M.; Gurioli, M.; Sanguinetti, S.; Zamfirescu, M.; Vinattieri, A.; Koguchi, N. Recombination lifetime of single GaAs/AlGaAs quantum dots. Phys. Status Solidi C 2006, 3, 3860–3863. [Google Scholar] [CrossRef]
- Ohtake, A.; Kocán, P.; Nakamura, J.; Natori, A.; Koguchi, N. Kinetics in surface reconstructions on GaAs (001). Phys. Rev. Lett. 2004, 92, 236105. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, A.; Mano, T.; Hagiwara, A.; Nakamura, J. Self-assembled growth of Ga droplets on GaAs (001): Role of surface reconstructions. Cryst. Growth Des. 2014, 14, 3110–3115. [Google Scholar] [CrossRef]
- Wassermeier, M.; Sudijono, J.; Johnson, M.; Leung, K.; Orr, B.; Däweritz, L.; Ploog, K. Reconstruction of the GaAs (311) A surface. Phys. Rev. B 1995, 51, 14721. [Google Scholar] [CrossRef]
- Haberern, K.; Pashley, M. GaAs (111) A-(2 × 2) reconstruction studied by scanning tunneling microscopy. Phys. Rev. B 1990, 41, 3226. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, S.; Watanabe, K.; Tateno, T.; Gurioli, M.; Werner, P.; Wakaki, M.; Koguchi, N. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth 2003, 253, 71–76. [Google Scholar] [CrossRef]
- Frolov, T.; Mishin, Y. Stable Nanocolloidal Structures in Metallic Systems. Phys. Rev. Lett. 2010, 104, 055701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlinar, V.; Bozkurt, M.; Ulloa, J.; Ediger, M.; Bester, G.; Badolato, A.; Koenraad, P.; Warburton, R.; Zunger, A. Structure of quantum dots as seen by excitonic spectroscopy versus structural characterization: Using theory to close the loop. Phys. Rev. B 2009, 80, 165425. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.W.; Zunger, A. Geometry of epitaxial GaAs/(Al, Ga) As quantum dots as seen by excitonic spectroscopy. Phys. Rev. B 2011, 84, 235317. [Google Scholar] [CrossRef] [Green Version]
- Abbarchi, M.; Kuroda, T.; Mano, T.; Sakoda, K.; Gurioli, M. Magneto-optical properties of excitonic complexes in GaAs self-assembled quantum dots. Phys. Rev. B 2010, 81, 035334. [Google Scholar] [CrossRef]
- Abbarchi, M.; Mastrandrea, C.; Kuroda, T.; Mano, T.; Sakoda, K.; Koguchi, N.; Sanguinetti, S.; Vinattieri, A.; Gurioli, M. Exciton fine structure in strain-free GaAs/Al 0.3 Ga 0.7 As quantum dots: Extrinsic effects. Phys. Rev. B 2008, 78, 125321. [Google Scholar] [CrossRef]
- Plumhof, J.; Křápek, V.; Wang, L.; Schliwa, A.; Bimberg, D.; Rastelli, A.; Schmidt, O. Experimental investigation and modeling of the fine structure splitting of neutral excitons in strain-free GaAs/AlXxGa1−x As quantum dots. Phys. Rev. B 2010, 81, 121309. [Google Scholar] [CrossRef]
- Tong, H.; Wu, M. Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: Fine structure and spin relaxation. Phys. Rev. B 2011, 83, 235323. [Google Scholar] [CrossRef] [Green Version]
- Trotta, R.; Zallo, E.; Ortix, C.; Atkinson, P.; Plumhof, J.; Van den Brink, J.; Rastelli, A.; Schmidt, O. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 2012, 109, 147401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalingam, K.; Otsuka, N.; Melloch, M.; Woodall, J. Arsenic precipitates in Al0.3Ga0.7As/GaAs multiple superlattice and quantum well structures. Appl. Phys. Lett. 1992, 60, 3253–3255. [Google Scholar] [CrossRef]
- Abbarchi, M.; Mastrandrea, C.; Kuroda, T.; Mano, T.; Vinattieri, A.; Sakoda, K.; Gurioli, M. Poissonian statistics of excitonic complexes in quantum dots. J. Appl. Phys. 2009, 106, 053504. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, T.; Belhadj, T.; Abbarchi, M.; Mastrandrea, C.; Gurioli, M.; Mano, T.; Ikeda, N.; Sugimoto, Y.; Asakawa, K.; Koguchi, N.; et al. Bunching visibility for correlated photons from single GaAs quantum dots. Phys. Rev. B 2009, 79, 035330. [Google Scholar] [CrossRef] [Green Version]
- Accanto, N.; Minari, S.; Cavigli, L.; Bietti, S.; Isella, G.; Vinattieri, A.; Sanguinetti, S.; Gurioli, M. Kinetics of multiexciton complex in gaas quantum dots on si. Appl. Phys. Lett. 2013, 102, 053109. [Google Scholar] [CrossRef]
- Abbarchi, M.; Troiani, F.; Mastrandrea, C.; Goldoni, G.; Kuroda, T.; Mano, T.; Sakoda, K.; Koguchi, N.; Sanguinetti, S.; Vinattieri, A.; et al. Spectral diffusion and line broadening in single self-assembled Ga As/ Al Ga As quantum dot photoluminescence. Appl. Phys. Lett. 2008, 93, 162101. [Google Scholar] [CrossRef]
- Bester, G.; Zunger, A. Compositional and size-dependent spectroscopic shifts in charged self-assembled InxGa1−xAs/GaAs quantum dots. Phys. Rev. B 2003, 68, 073309. [Google Scholar] [CrossRef]
- Narvaez, G.A.; Bester, G.; Zunger, A. Excitons, biexcitons, and trions in self-assembled (In, Ga) As/ Ga As quantum dots: Recombination energies, polarization, and radiative lifetimes versus dot height. Phys. Rev. B 2005, 72, 245318. [Google Scholar] [CrossRef] [Green Version]
- Schliwa, A.; Winkelnkemper, M.; Bimberg, D. Few-particle energies versus geometry and composition of InxGa1−x As/GaAs self-organized quantum dots. Phys. Rev. B 2009, 79, 075443. [Google Scholar] [CrossRef]
- Lelong, P.; Bastard, G. Binding energies of excitons and charged excitons in GaAsGa (In) As quantum dots. Solid State Commun. 1996, 98, 819–823. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Katayama, S. A quantum Monte Carlo study on excitonic molecules in quantum wells. Solid-State Electron. 1998, 42, 1523–1526. [Google Scholar] [CrossRef]
- Tsuchiya, T. Biexcitons and charged excitons in quantum dots: A quantum Monte Carlo study. Phys. E Low-Dimens. Syst. Nanostructures 2000, 7, 470–474. [Google Scholar] [CrossRef]
- Tsuchiya, T. Diffusion Monte Carlo study on biexcitons and charged excitons in semiconductor quantum structures. Prog. Theor. Phys. Suppl. 2000, 138, 128–129. [Google Scholar] [CrossRef] [Green Version]
- Plumhof, J.D.; Trotta, R.; Rastelli, A.; Schmidt, O.G. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots. Nanoscale Res. Lett. 2012, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R. Exchange coupling and polarization relaxation in self-assembled quantum dots. Phys. E Low-Dimens. Syst. Nanostructures 2002, 13, 216–219. [Google Scholar] [CrossRef]
- Seguin, R.; Schliwa, A.; Rodt, S.; Pötschke, K.; Pohl, U.; Bimberg, D. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 2005, 95, 257402. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Hofer, B.; Zallo, E.; Trotta, R.; Luo, J.W.; Schmidt, O.; Zhang, C. Statistical properties of exciton fine structure splitting and polarization angles in quantum dot ensembles. Phys. Rev. B 2014, 89, 205312. [Google Scholar] [CrossRef] [Green Version]
- Schimpf, C.; Reindl, M.; Basset, F.B.; Jöns, K.D.; Trotta, R.; Rastelli, A. Quantum dots as potential sources of strongly entangled photons for quantum networks. arXiv 2020, arXiv:2011.12727. [Google Scholar]
- Abbarchi, M.; Kuroda, T.; Mastrandrea, C.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Sakoda, K.; Gurioli, M. Fine structure splitting of quantum dot excitons: Role of geometry and environment. Phys. E Low-Dimens. Syst. Nanostructures 2010, 42, 881–883. [Google Scholar] [CrossRef]
- Belhadj, T.; Amand, T.; Kunold, A.; Simon, C.M.; Kuroda, T.; Abbarchi, M.; Mano, T.; Sakoda, K.; Kunz, S.; Marie, X.; et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 2010, 97, 051111. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; You, W.T.; Chou, H.Y.; Cheng, S.J.; Lin, S.D.; Chang, W.H. Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots. Phys. Rev. B 2011, 83, 075317. [Google Scholar] [CrossRef] [Green Version]
- Tonin, C.; Hostein, R.; Voliotis, V.; Grousson, R.; Lemaitre, A.; Martinez, A. Polarization properties of excitonic qubits in single self-assembled quantum dots. Phys. Rev. B 2012, 85, 155303. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.H.; Liao, C.C.; Ku, C.H.; Chang, Y.C.; Cheng, S.J.; Jo, M.; Kuroda, T.; Mano, T.; Abbarchi, M.; Sakoda, K. Geometrical impact on the optical polarization of droplet epitaxial quantum dots. Phys. Rev. B 2012, 86, 115323. [Google Scholar] [CrossRef] [Green Version]
- Plumhof, J.; Trotta, R.; Křápek, V.; Zallo, E.; Atkinson, P.; Kumar, S.; Rastelli, A.; Schmidt, O.G. Tuning of the valence band mixing of excitons confined in GaAs/AlGaAs quantum dots via piezoelectric-induced anisotropic strain. Phys. Rev. B 2013, 87, 075311. [Google Scholar] [CrossRef]
- Fras, F.; Bernardot, F.; Eble, B.; Bernard, M.; Siarry, B.; Miard, A.; Lemaitre, A.; Testelin, C.; Chamarro, M. The role of heavy–light-hole mixing on the optical initialization of hole spin in InAs quantum dots. J. Phys. Condens. Matter 2013, 25, 202202. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Bester, G.; Zunger, A. Supercoupling between heavy-hole and light-hole states in nanostructures. Phys. Rev. B 2015, 92, 165301. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Weyhausen-Brinkmann, F.; Martín-Sánchez, J.; Piredda, G.; Křápek, V.; Huo, Y.; Huang, H.; Schimpf, C.; Schmidt, O.G.; Edlinger, J.; et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbarchi, M.; Mano, T.; Kuroda, T.; Ohtake, A.; Sakoda, K. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials 2021, 11, 443. https://doi.org/10.3390/nano11020443
Abbarchi M, Mano T, Kuroda T, Ohtake A, Sakoda K. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials. 2021; 11(2):443. https://doi.org/10.3390/nano11020443
Chicago/Turabian StyleAbbarchi, Marco, Takaaki Mano, Takashi Kuroda, Akihiro Ohtake, and Kazuaki Sakoda. 2021. "Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy" Nanomaterials 11, no. 2: 443. https://doi.org/10.3390/nano11020443
APA StyleAbbarchi, M., Mano, T., Kuroda, T., Ohtake, A., & Sakoda, K. (2021). Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials, 11(2), 443. https://doi.org/10.3390/nano11020443