Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Synthesis and Characterization
2.2. Human Primary Mono/Lymphocytes
2.3. Cell Viability/Cytotoxicity
2.4. Apoptosis
2.5. Oxidative Stress
2.6. Nuclear Staining
2.7. Cytokines Secretion
2.8. Statistical Analysis
3. Results
3.1. In Vitro Exposure of Peripheral Blood Mononuclear Cells (PBMC)
3.1.1. Cell Viability
3.1.2. Apoptosis and Necrosis
3.1.3. Oxidative Stress
3.1.4. Nuclear Morphology
3.1.5. Cytokines Profile
- (i)
- MSN exposure was associated with strong increase of IL-1β and IL-4, a decrease of IL-2 and IFN-γ levels, in a dose-dependent manner. IL-17 and IL-23 were down-modulated while no significant changes in IL-6, TNF-α, IL-10 were detected (data not shown).
- (ii)
- P25 determined a decrease of IL-2 and IFN-γ, increase of IL-4 (at non cytotoxic concentrations, 1–50 µg/mL) and an obvious dose-dependent increase of IL-10, and TNF-α. IL-17 and IL-23 were downmodulated, whereas IL-6 and IL-1β were not affected (data not shown).
- (iii)
- TiO2@MSN induced dose-dependent reduction of IL-2 and IFN-γ, particularly high spikes of TNF-α and dose-dependent increase of IL-1β and IL-10. Moreover, it induced a dose- and time-dependent fluctuating levels of TNF-α and IL-4, an increase of IL-17 and IL-23 as well as no significant change of (limited) IL-6 (Figure 8).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Applications. 2011, 4, 95–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux-Research. Nanomaterials State of the Market: Stealth Success, Broad Impact. 2 Report. 2018. Available online: rchinc.com/research/ (accessed on 20 March 2018).
- Trivedi, B.B.M.; Murase, J. Titanium Dioxide in Sunscreen. IntechOpen 2017, 26, 61–71. [Google Scholar] [CrossRef] [Green Version]
- European Union. COMMISSION REGULATION (EU) 2016/1143 of 13 July 2016 amending Annex VI to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Off. J. Eur. Union 2016, 189, 40–43. [Google Scholar]
- Sungur, Ş. Titanium Dioxide Nanoparticles. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O., Martínez, L., Kharisov, B., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lewicka, Z.A.; Yu, W.W.; Oliva, B.L.; Contreras, E.Q.; Colvin, V.L. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol. A Chem. 2013, 263, 24–33. [Google Scholar] [CrossRef]
- Falcaro, P.; Zaccariello, G.; Stoyanova, V.; Benedetti, A.; Costacurta, S. Temperature matters: An infrared spectroscopic investigation on the photocatalytic efficiency of titania coatings. Sci. Adv. Mater. 2014, 6, 1330–1337. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A review of inorganic UV filters zinc oxide (ZnO) and titanium dioxide (TiO2). Photodermatol. Photoimmunol. Photomed. 2018, 35, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Vela, N.; Pérez-Lucas, G.; Fenoll, J.; Navarro, S. Recent Overview on the Abatement of Pesticide Residues in Water by Photocatalytic Treatment Using TiO2. Appl. Titan. Dioxide 2017, 147–177. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, N.T.; John, H. Titanium dioxide based self-cleaning smart surfaces: A short review. J. Environ. Chem. Eng. 2020, 8, 104211. [Google Scholar] [CrossRef]
- Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.J.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- De La Vega, A.C.S.; Molins-Delgado, D.; Barceló, D.; Diaz-Cruz, M.S. Nanosized titanium dioxide UV filter increases mixture toxicity when combined with parabens. Ecotoxicol. Environ. Saf. 2019, 184, 109565. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S. Nanotechnology in Photoprotection. In Nanoscience in Dermatology; Academic Press: Cambridge, MA, USA, 2016; pp. 229–236. [Google Scholar] [CrossRef]
- Wani, M.R.; Shadab, G. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol. Ind. Health 2020, 36, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.D.; Stotland, M.; Ellis, J.I. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–962. [Google Scholar] [CrossRef]
- Musial, J.; Krakowiak, R.; Mlynarczyk, D.T.; Goslinski, T.; Stanisz, B.J. Titanium Dioxide Nanoparticles in Food and Personal Care Products—What Do We Know about Their Safety? Nanomaterials 2020, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.; Pirot, F.; Bertholle, V.; Roussel, L.; Falson, F.; Padois, K. Commonly Used UV Filter Toxicity on Biological Functions: Review of Last Decade Studies. Int. J. Cosmet. Sci. 2013, 35, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Ortelli, S.; Poland, C.A.; Baldi, G.; Costa, A.L. Silica matrix encapsulation as a strategy to control ROS production while preserving photoreactivity in nano-TiO2. Environ. Sci. Nano 2016, 3, 602–610. [Google Scholar] [CrossRef]
- Bengalli, R.; Ortelli, S.; Blosi, M.; Costa, A.L.; Mantecca, P.; Fiandra, L. In Vitro Toxicity of TiO2:SiO2 Nanocomposites with Different Photocatalytic Properties. Nanomaterials 2019, 9, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaccariello, G.; Moretti, E.; Storaro, L.; Riello, P.; Canton, P.; Gombac, V.; Montini, T.; Rodriguez-Castellon, E.; Benedetti, A. TiO2-mesoporous silica nanocomposites: Cooperative effect in the photocatalytic degradation of dyes and drugs. RSC Adv. 2014, 4, 37826–37837. [Google Scholar] [CrossRef]
- Zaccariello, G.; Back, M.; Zanello, M.; Canton, P.; Cattaruzza, E.; Riello, P.; Alimonti, A.; Benedetti, A. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles: An efficient self-sealing nanosystem for UV filtering in cosmetic formulation. ACS Appl. Mater. Interfaces 2016, 9, 1913–1921. [Google Scholar] [CrossRef]
- Zaccariello, G.; Back, M.; Benedetti, A.; Canton, P.; Cattaruzza, E.; Onoda, H.; Glisenti, A.; Alimonti, A.; Bocca, B.; Riello, P. Bismuth titanate-based UV filters embedded mesoporous silica nanoparticles: Role of bismuth concentration in the self-sealing process. J. Colloid Interface Sci. 2019, 549, 1–8. [Google Scholar] [CrossRef]
- Back, M.; Casagrande, E.; Brondin, C.A.; Ambrosi, E.; Cristofori, D.; Ueda, J.; Tanabe, S.; Trave, E.; Riello, P. Lanthanide-Doped Bi2SiO5@SiO2 Core-Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry. ACS Appl. Nano Mater 2020, 3, 2594–2604. [Google Scholar] [CrossRef]
- Casagrande, E.; Back, M.; Cristofori, D.; Ueda, J.; Tanabe, S.; Palazzolo, S.; Rizzolio, F.; Canzonieri, V.; Trave, E.; Riello, P. Upconversion-Mediated Boltzmann Thermometry in Double-Layered Bi2SiO5:Yb3+, Tm3+@SiO2 Hollow Nanoparticles. J. Mater. Chem. C 2020, 8, 7828–7836. [Google Scholar] [CrossRef]
- Malgras, V.; Tominaka, S.; Ryan, J.W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 2016, 138, 13874–13881. [Google Scholar] [CrossRef] [PubMed]
- Dirin, D.N.; Protesescu, L.; Trummer, D.; Kochetygov, I.V.; Yakunin, S.; Krumeich, F.; Stadie, N.P.; Kovalenko, M.V. Harnessing defect-tolerance at the nanoscale: Highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 2016, 16, 5866–5874. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Trave, E.; Zaccariello, G.; Cristofori, D.; Canton, P.; Benedetti, A.; Riello, P. Bi2SiO5@g-SiO2 upconverting nanoparticles: A bismuth-driven core-shell self-assembly mechanism. Nanoscale 2019, 11, 675–687. [Google Scholar] [CrossRef]
- Dhupal, M.; Oh, J.-M.; Tripathy, D.R.; Kim, S.-K.; Koh, S.-B.; Park, K.-S. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Int. J. Nanomed. 2018, 13, 6735–6750. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sharma, R.K.; Gaur, K.; Torres, J.F.C.; Loza-Rosas, S.A.; Torres, A.; Saxena, M.; Julin, M.; Tinoco, A.D. Fueling a Hot Debate on the Application of TiO2 Nanoparticles in Sunscreen. Materials 2019, 12, 2317. [Google Scholar] [CrossRef] [Green Version]
- Heidegger, S.; Gössl, D.; Schmidt, A.; Niedermayer, S.; Argyo, C.; Endres, S.; Bein, T.; Bourquin, C. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 2016, 8, 938–948. [Google Scholar] [CrossRef] [Green Version]
- Murugadoss, S.; Lison, D.; Godderis, L.; Brule, S.V.D.; Mast, J.; Brassinne, F.; Sebaïhi, N.; Hoet, P. Toxicology of silica nanoparticles: An update. Arch. Toxicol. 2017, 91, 2967–3010. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The Toxicity of Silica Nanoparticles to the Immune System. Nanomedicine 2018, 13, 1939–1962. [Google Scholar] [CrossRef] [Green Version]
- Cendrowski, K. Titania/mesoporous silica nanotubes with efficient photocatalytic properties. J. Chem. Technol. 2018, 20, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Wang, Y.; Zhu, Y. A simple room temperature synthesis of mesoporous silica nanoparticles for drug storage and pressure pulsed delivery. J. Porous Mater. 2010, 18, 233–239. [Google Scholar] [CrossRef]
- Cammi, A.; Ponciroli, R.; Di Tigliole, A.B.; Magrotti, G.; Prata, M.; Chiesa, D.; Previtali, E. A zero dimensional model for simulation of TRIGA Mark II dynamic response. Prog. Nucl. Energy 2013, 68, 43–54. [Google Scholar] [CrossRef]
- Böyum, A. Separation of Leukocytes from Blood and Bone Marrow. Introduction. Scand. J. Clin. Lab. Investig. 1968, 97, 7. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Koopman, G.; Reutelingsperger, C.; Kuijten, G.; Keehnen, R.; Pals, S.; Van Oers, M. Annexin V for Flow Cytometric Detection of Phosphatidylserine Expression on B Cells Undergoing Apoptosis. Blood 1994, 84, 1415–1420. [Google Scholar] [CrossRef] [Green Version]
- Lebel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the Probe 2′,7′-Dichlorofluorescin as an Indicator of Reactive Oxygen Species Formation and Oxidative Stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [Green Version]
- Tiano, L.; Armeni, T.; Venditti, E.; Barucca, G.; Mincarelli, L.; Damiani, E. Modified TiO2 Particles Differentially Affect Human Skin Fibroblasts Exposed to UVA Light. Free Radic. Biol. Med. 2010, 49, 408–415. [Google Scholar] [CrossRef]
- Rampaul, A.; Parkin, I.P.; Cramer, L.P. Damaging and Protective Properties of Inorganic Components of Sunscreens Applied to Cultured Human Skin Cells. J. Photochem. Photobiol. A Chem. 2007, 191, 138–148. [Google Scholar] [CrossRef]
- Nohynek, G.; Dufour, E.; Roberts, M.S. Nanotechnology, Cosmetics and the Skin: Is There a Health Risk? Ski. Pharmacol. Physiol. 2008, 21, 136–149. [Google Scholar] [CrossRef]
- Long, T.C.; Saleh, N.; Tilton, R.D.; Lowry, G.V.; Veronesi, B. Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. Environ. Sci. Technol. 2006, 40, 4346–4352. [Google Scholar] [CrossRef] [PubMed]
- Pelclova, D.; Zdimal, V.; Fenclova, Z.; Vlckova, S.; Turci, F.; Corazzari, I.; Kacer, P.; Schwarz, J.; Zikova, N.; Makes, O.; et al. Markers of Oxidative Damage of Nucleic Acids and Proteins among Workers Exposed to TiO2 (Nano) Particles. Occup. Environ. Med. 2016, 73, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Ji, L.; Zhou, Y.; Wang, L. Retracted: Pulmonary Fibrosis of Mice and Its Molecular Mechanism Following Chronic Inhaled Exposure to TiO2 Nanoparticles. Environ. Toxicol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Osman, I.F.; Najafzadeh, M.; Sharma, V.; Shukla, R.K.; Jacob, B.K.; Dhawan, A.; Anderson, D. TiO2 NPs Induce DNA Damage in Lymphocytes from Healthy Individuals and Patients with Respiratory Diseases—An Ex Vivo/In Vitro Study. J. Nanosci. Nanotechnol. 2018, 18, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Uga, H.; Mori, A.; Kurata, H. Increased Serum IL-17A and Th2 Cytokine Levels in Patients with Severe Uncontrolled Asthma. Eur. Cytokine Netw. 2017, 28, 8–18. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Y.; Jia, G.; Xu, H.; Zhou, J.; Tang, S.; Xu, Z.; Kong, F.; Liu, G.; Zhang, Y.; et al. Cardiopulmonary Effects Induced by Occupational Exposure to Titanium Dioxide Nanoparticles. Nanotoxicology 2018, 12, 169–184. [Google Scholar] [CrossRef]
- Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019, 109, 1100–1111. [Google Scholar] [CrossRef]
- Petrarca, C.; Clemente, E.; Di Giampaolo, L.; Mariani-Costantini, R.; Leopold, K.; Schindl, R.; Lotti, L.V.; Mangifesta, R.; Sabbioni, E.; Niu, Q.; et al. Palladium Nanoparticles Induce Disturbances in Cell Cycle Entry and Progression of Peripheral Blood Mononuclear Cells: Paramount Role of Ions. J. Immunol. Res. 2014, 2014, 295092. [Google Scholar] [CrossRef]
- Petrarca, C.; Perrone, A.; Verna, N.; Verginelli, F.; Ponti, J.; Sabbioni, E.; Di Giampaolo, L.; Dadorante, V.; Schiavone, C.; Boscolo, P.; et al. Cobalt Nano-Particles Modulate Cytokine in Vitro Release by Human Mononuclear Cells Mimicking Autoimmune Disease. Int. J. Immunopathol. Pharmacol. 2006, 19 (Suppl. 4), 11–14. [Google Scholar]
- Boscolo, P.; Bellante, V.; Leopold, K.; Maier, M.; Di, L.G.; Antonucci, A.; Iavicoli, I.; Tobia, L.; Paoletti, A.; Montalti, M.; et al. Effects of Palladium Nanoparticles on the Cytokine Release from Peripheral Blood Mononuclear Cells of Non-Atopic Women. J. Biol. Regul. Homeost. Agents 2010, 24, 207–214. [Google Scholar] [CrossRef]
- Di Gioacchino, M.; Perrone, A.; Petrarca, C.; Verna, N.; Esposito, D.; Ponti, J.; Sabbioni, E.; Di Giampaolo, L.; Boscolo, P.; Costantini, R.M. In Vitro Cytokine Modulation by Cobalt Nano- and Microparticles and Solutions. G. Ital. Di Med. Del Lav. Ed. Ergon. 2006, 28, 316–318. [Google Scholar]
- Di Gioacchino, M.; Verna, N.; Di Giampaolo, L.; Di Claudio, F.; Turi, M.; Perrone, A.; Petrarca, C.; Mariani-Costantini, R.; Sabbioni, E.; Boscolo, P. Immunotoxicity and Sensitizing Capacity of Metal Compounds Depend on Speciation. Int. J. Immunopathol. Pharmacol. 2007, 20 (Suppl. 2), 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, W.C.; Smolkin, M.E.; Farris, E.M.; Fink, R.J.; Czarkowski, A.; Fink, J.H.; Chianese-Bullock, K.A.; Slingluff, C.L. Shipping Blood to a Central Laboratory in Multicenter Clinical Trials: Effect of Ambient Temperature on Specimen Temperature, and Effects of Temperature on Mononuclear Cell Yield, Viability and Immunologic Function. J. Transl. Med. 2011, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfandyarpour, R.; Kashi, A.; Nemat-Gorgani, M.; Wilhelmy, J.; Davis, R.W. A Nanoelectronics-Blood-Based Diagnostic Biomarker for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Proc. Natl. Acad. Sci. USA 2019, 116, 10250–10257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Mankus, C.I.; Vermilya, A.M.; Soheilian, F.; Clogston, J.D.; Dobrovolskaia, M.A. Feraheme® Suppresses Immune Function of Human T Lymphocytes through Mitochondrial Damage and MitoROS Production. Toxicol. Appl. Pharmacol. 2018, 350, 52–63. [Google Scholar] [CrossRef]
- Malorni, L.; Guida, V.; Sirignano, M.; Genovese, G.; Petrarca, C.; Pedata, P. Exposure to Sub-10nm Particles Emitted from a Biodiesel-Fueled Diesel Engine: In Vitro Toxicity and Inflammatory Potential. Toxicol. Lett. 2017, 270, 51–61. [Google Scholar] [CrossRef]
- Petrarca, C.; Clemente, E.; Amato, V.; Pedata, P.; Sabbioni, E.; Bernardini, G.; Iavicoli, I.; Cortese, S.; Niu, Q.; Otsuki, T.; et al. Engineered Metal Based Nanoparticles and Innate Immunity. Clin. Mol. Allergy 2015, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Sabbioni, E.; Fortaner, S.; Farina, M.; Del Torchio, R.; Petrarca, C.; Bernardini, G.; Mariani-Costantini, R.; Perconti, S.; Di Giampaolo, L.; Gornati, R.; et al. Interaction with Culture Medium Components, Cellular Uptake and Intracellular Distribution of Cobalt Nanoparticles, Microparticles and Ions in Balb/3T3 Mouse Fibroblasts. Nanotoxicology 2014, 8, 88–99. [Google Scholar] [CrossRef]
- Pedata, P.; Petrarca, C.; Garzillo, E.M.; Di Gioacchino, M. Immunotoxicological Impact of Occupational and Environmental Nanoparticles Exposure: The Influence of Physical, Chemical, and Combined Characteristics of the Particles. Int. J. Immunopathol. Pharmacol. 2016, 29, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Di Gioacchino, M.; Petrarca, C.; Lazzarin, F.; Di Giampaolo, L.; Sabbioni, E.; Boscolo, P.; Mariani-Costantini, R.; Bernardini, G. Immunotoxicity of Nanoparticles. Int. J. Immunopathol. Pharmacol. 2011, 24 (Suppl. 1), 65S–71S. [Google Scholar]
- Di, L.G.; Di, M.G.; Mangifesta, R.; Gatta, A.; Tinari, N.; Grassadonia, A.; Niu, Q.; Paganelli, R.; Sabbioni, E.; Otsuki, T.; et al. Occupational Allergy: Is There a Role for Nanoparticles? J. Biol. Regul. Homeost. Agents 2019, 33, 661–668. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31179676 (accessed on 3 July 2019).
- Perconti, S.; Aceto, G.M.; Verginelli, F.; Napolitano, F.; Petrarca, C.; Bernardini, G.; Raiconi, G.; Tagliaferri, R.; Sabbioni, E.; Di, M.G.; et al. Distinctive Gene Expression Profiles in Balb/3T3 Cells Exposed to Low Dose Cobalt Nanoparticles, Microparticles and Ions: Potential Nanotoxicological Relevance. J. Biol. Regul. Homeost. Agents 2013, 27, 443–454. [Google Scholar]
- Di Gioacchino, M.; Petrarca, C.; Gatta, A.; Scarano, G.; Farinelli, A.; Della Valle, L.; Lumaca, A.; Del Biondo, P.; Paganelli, R.; Di Giampaolo, L. Nanoparticle-Based Immunotherapy: State of the Art and Future Perspectives. Expert Rev. Clin. Immunol. 2020, 16, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Netzer, K.; Jordakieva, G.; Kataeva, N.; Schotter, J.; Ertl, P.; Girard, A.M.; Budinsky, A.C.; Pilger, A.; Richter, L.; Godnic-Cvar, J. Next-Generation Magnetic Nanocomposites: Cytotoxic and Genotoxic Effects of Coated and Uncoated Ferric Cobalt Boron (FeCoB) Nanoparticles In Vitro. Basic Clin. Pharmacol. Toxicol. 2018, 122, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Pro, S.C.; Imedio, A.D.; Santoso, C.S.; Gan, K.A.; Sewell, J.A.; Martinez, M.; Sereda, R.; Mehta, S.; Bass, J.I.F. Global Landscape of Mouse and Human Cytokine Transcriptional Regulation. Nucleic Acids Res. 2018, 46, 9321–9337. [Google Scholar] [CrossRef] [Green Version]
- Canna, S.; Behrens, E.M. Making Sense of the Cytokine Storm: A Conceptual Framework for Understanding, Diagnosing, and Treating Hemophagocytic Syndromes. Pediatric Clin. N. Am. 2012, 59, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biola-Clier, M.; Beal, D.; Caillat, S.; Libert, S.; Armand, L.; Herlin-Boime, N.; Sauvaigo, S.; Douki, T.; Carriere, M. Comparison of the DNA Damage Response in BEAS-2B and A549 Cells Exposed to Titanium Dioxide Nanoparticles. Mutagenesis 2016, 32, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Nelson, B.C.; Scanlan, L.D.; Coskun, E.; Jaruga, P.; Doak, S.H. Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways. Int. J. Mol. Sci. 2017, 18, 1515. [Google Scholar] [CrossRef] [Green Version]
Characterization | Analytical Method | Result |
---|---|---|
SiO2/TiO2 ratio | INAA (Instrumental Neutron Activation Analysis) | 10.8 |
Physicochemical | BET/BJH (Brunauer, Emmett, Teller (BET)/Barrett, Joyner, Halenda (BJH) Determination of Specific Surface Area and Pore Size Distribution) | <S.A.BET; <Dp; <Vp |
FT-IR (Fourier Transform Infrared Spectroscopy) | No variations of note | |
XRD (x-ray diffraction) | Diffraction peaks: size nanopores ≈ 5 nmAnatase phase | |
TEM (Transmission electron microscopy) | Size TiO2 NPs in MSN ≈ 5 nm | |
UV-vis DR (Diffuse Reflectance) | Absorption band: 200–360 nm | |
DLS (Dynamic Light Scattering) | Instability | |
PCR (Polymerase Chain Reaction) | No mycoplasma contamination | |
Manufactured NP sample suitability (for further cytotoxicity assays) | MTS/LDH (Lactate Dehydrogenase) | No absorption No interference with detection reaction by TiO2@MSN Scattering activity: yes |
MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3carboxymethoxyphenyl) -2-(4-sulfophenyl)-2H-tetrazolium) | 4 h → 48 h > MSN |
Samples | Cytokine Tested | Effect on Extracellular Eytokine Level | Types of Immune Cells Involved | Role |
---|---|---|---|---|
| IL-2 | Decrease | Pan T cells |
|
| IFN-γ | Decrease | T helper 1 |
|
| IL-4 | Increase | T helper 2, monocytes |
|
| IL-1β | Increase | Monocytes/macrophages, NK cells (and neutrophils) |
|
| IL-10 | Increase | Regulatory T cells, dendritic cells |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giampaolo, L.; Zaccariello, G.; Benedetti, A.; Vecchiotti, G.; Caposano, F.; Sabbioni, E.; Groppi, F.; Manenti, S.; Niu, Q.; Poma, A.M.G.; et al. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). Nanomaterials 2021, 11, 270. https://doi.org/10.3390/nano11020270
Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AMG, et al. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). Nanomaterials. 2021; 11(2):270. https://doi.org/10.3390/nano11020270
Chicago/Turabian StyleDi Giampaolo, Luca, Gloria Zaccariello, Alvise Benedetti, Giulia Vecchiotti, Francesca Caposano, Enrico Sabbioni, Flavia Groppi, Simone Manenti, Qiao Niu, Anna Maria Giuseppina Poma, and et al. 2021. "Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC)" Nanomaterials 11, no. 2: 270. https://doi.org/10.3390/nano11020270
APA StyleDi Giampaolo, L., Zaccariello, G., Benedetti, A., Vecchiotti, G., Caposano, F., Sabbioni, E., Groppi, F., Manenti, S., Niu, Q., Poma, A. M. G., Di Gioacchino, M., & Petrarca, C. (2021). Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). Nanomaterials, 11(2), 270. https://doi.org/10.3390/nano11020270