# Anisotropic Optical and Vibrational Properties of GeS

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Samples

#### 2.2. Experimental Techniques

#### 2.3. Theoretical Calculations

## 3. Results

#### 3.1. Crystallographic Structure

#### 3.2. Optical Properties

#### 3.3. Vibrational Properties

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. The Temperature Dependence of the Raman Scattering Spectra

**Figure A1.**Raman scattering spectra measured on GeS as a function of temperature in range from 5 K to 300 K under 1.96 eV excitation.

## References

- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS
_{2}: A New Direct-Gap Semiconductor. Phys. Rev. Lett.**2010**, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale
**2015**, 7, 10421. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Arora, A.; Nogajewski, K.; Molas, M.; Koperski, M.; Potemski, M. Exciton band structure in layered MoSe2: From a monolayer to the bulk limit. Nanoscale
**2015**, 7, 20769. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Molas, M.R.; Nogajewski, K.; Slobodeniuk, A.O.; Binder, J.; Bartos, M.; Potemski, M. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale
**2017**, 9, 13128. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bandurin, D.A.; Tyurnina, A.V.; Yu, G.L.; Mishchenko, A.; Zólyomi, V.; Morozov, S.V.; Kumar, R.K.; Gorbachev, R.V.; Kudrynskyi, Z.R.; Pezzini, S.; et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol.
**2016**, 12, 223–227. [Google Scholar] [CrossRef] [PubMed] - Ling, X.; Huang, S.; Hasdeo, E.H.; Liang, L.; Parkin, W.M.; Tatsumi, Y.; Nugraha, A.R.T.; Puretzky, A.A.; Das, P.M.; Sumpter, B.G.; et al. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Lett.
**2016**, 16, 2260–2267. [Google Scholar] [CrossRef] [PubMed] - Ribeiro, H.B.; Pimenta, M.A.; de Matos, C.J.S.; Moreira, R.L.; Rodin, A.S.; Zapata, J.D.; de Souza, E.A.T.; Neto, A.H.C. Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano
**2015**, 9, 4270–4276. [Google Scholar] [CrossRef] - Molas, M.R.; Macewicz, L.; Wieloszyńska, A.; Jakóbczyk, P.; Wysmołek, A.; Bogdanowicz, R.; Jasinski, J.B. Photoluminescence as a probe of phosphorene properties. NPJ 2D Mater. Appl.
**2021**, 5, 83. [Google Scholar] [CrossRef] - Choi, Y.; Kim, K.; Lim, S.Y.; Kim, J.; Park, J.M.; Kim, J.H.; Lee, Z.; Cheong, H. Complete determination of the crystallographic orientation of ReX2 (X = S, Se) by polarized Raman spectroscopy. Nanoscale Horiz.
**2020**, 5, 308–315. [Google Scholar] [CrossRef] [Green Version] - Kipczak, L.; Grzeszczyk, M.; Olkowska-Pucko, K.; Babiński, A.; Molas, M.R. The optical signature of few-layer ReSe2. J. Appl. Phys.
**2020**, 128, 044302. [Google Scholar] [CrossRef] - Li, F.; Liu, X.; Wang, Y.; Li, Y. Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. J. Mater. Chem. C
**2016**, 4, 2155–2159. [Google Scholar] [CrossRef] - Ho, C.H.; Li, J.X. Polarized Band-Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS. Mater. Views
**2016**, 5, 1600814. [Google Scholar] [CrossRef] - Tan, D.; Lim, H.E.; Wang, F.; Mohamed, N.B.; Moun, S.; Zhang, W.; Miyauchu, Y.; Ohfuchi, M.; Matsuda, K. Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Res.
**2017**, 2, 546–555. [Google Scholar] [CrossRef] - Lam, D.; Chen, K.S.; Kang, J.; Liu, X.; Hersam, M.C. Anhydrous Liquid-Phase Exfoliation of Pristine Electrochemically Active GeS Nanosheets. Chem. Mater.
**2018**, 30, 2245–2250. [Google Scholar] [CrossRef] - Ribeiro, H.B.; Ramos, S.L.L.M.; Seixas, L.; de Matos, C.J.S.; Pimenta, M.A. Edge phonons in layered orthorhombic GeS and GeSe monochalcogenides. Phys. Rev. B
**2019**, 100, 094301. [Google Scholar] [CrossRef] - Oliva, R.; Woźniak, T.; Dybala, F.; Tołłoczko, A.; Kopaczek, J.; Scharoch, P.; Kudrawiec, R. Valley polarization investigation of GeS under high pressure. Phys. Rev. B
**2020**, 101, 235205. [Google Scholar] [CrossRef] - Tołłoczko, A.; Oliva, R.; Wożniak, T.; Kopaczek, J.; Scharoch, P.; Kudrawiec, R. Anisotropic optical properties of GeS investigated by optical absorption and photoreflectance. Mater. Adv.
**2020**, 1, 1886–1894. [Google Scholar] [CrossRef] - Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H.S.J.; Steele, G.A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater.
**2014**, 1, 011002. [Google Scholar] [CrossRef] - Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B
**1996**, 54, 11169–11186. [Google Scholar] [CrossRef] - Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B
**1999**, 59, 1758–1775. [Google Scholar] [CrossRef] - Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.
**1996**, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.
**2010**, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Parlinski, K.; Li, Z.Q.; Kawazoe, Y. First-Principles Determination of the Soft Mode in Cubic ZrO
_{2}. Phys. Rev. Lett.**1997**, 78, 4063–4066. [Google Scholar] [CrossRef] - Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater.
**2015**, 108, 1–5. [Google Scholar] [CrossRef] [Green Version] - Togo, A.; Tanaka, I. Spglib: A software library for crystal symmetry search. arXiv
**2018**, arXiv:1808.01590. [Google Scholar] - Wiedemeier, H.; Siemers, P.A. The Thermal Expansion of GeS and GeTe. Z. Anorg. Allg. Chem.
**1977**, 431, 299–304. [Google Scholar] [CrossRef] - Hecht, E. OPTics, 5th ed.; Pearson Education Limited: Harlow, UK, 2017; p. 347. [Google Scholar]
- Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi RRL—Rapid Res. Lett.
**2015**, 9, 457–461. [Google Scholar] [CrossRef] [Green Version] - Shang, J.; Shen, X.; Cong, C.; Peimyoo, N.; Cao, B.; Eginligil, M.; Yu, T. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano
**2015**, 9, 647–655. [Google Scholar] [CrossRef] - Plechinger, G.; Nagler, P.; Arora, A.; Granados del Águila, A.; Ballottin, M.V.; Frank, T.; Steinleitner, P.; Gmitra, M.; Fabian, J.; Christianen, P.C.M.; et al. Excitonic Valley Effects in Monolayer WS2 under High Magnetic Fields. Nano Lett.
**2016**, 16, 7899–7904. [Google Scholar] [CrossRef] [Green Version] - Kłopotowski, Ł.; Backes, C.; Mitioglu, A.A.; Vega-Mayoral, V.; Hanlon, D.; Coleman, J.N.; Ivanov, V.Y.; Maude, D.K.; Plochocka, P. Revealing the nature of excitons in liquid exfoliated monolayer tungsten disulphide. Nanotechnology
**2016**, 27, 425701. [Google Scholar] [CrossRef] [Green Version] - Zou, B.; Wei, Y.; Zhou, Y.; Ke, D.; Zhang, X.; Zhang, M.; Yip, C.T.; Chen, X.; Li, W.; Sun, H. Unambiguous determination of crystal orientation in black phosphorus by angle-resolved polarized Raman spectroscopy. Nanoscale Horiz.
**2021**, 6, 809–818. [Google Scholar] [CrossRef] [PubMed] - Kim, J.; Lee, J.U.; Lee, J.; Park, H.J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale
**2015**, 7, 18708–18715. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sriv, T.; Nguyen, T.M.H.; Lee, Y.; Lim, S.Y.; Nguyen, V.Q.; Kim, K.; Cho, S.; Cheong, H. Optical phonons of SnSe(1-x)Sx layered semiconductor alloys. Sci. Rep.
**2020**, 10, 11761. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Top and side views of the GeS crystal structure for a single layer. The armchair and zigzag directions are shown in relation to the crystal orientation and lattice parameters. (

**b**) Geometrical structure of multilayer GeS.

**Figure 2.**(

**a**) The low-temperature (T = 5 K) PL (blue curve) and RC (red curve) spectra measured on the GeS flake. Polar plots of the integrated intensities of the X transitions from the (

**b**) PL and (

**c**) RC spectra.

**Figure 3.**(

**a**) False-color map of low-temperature PL spectra of GeS as a function of the detection angle of linear polarization under 1.88 eV laser light excitation. (

**b**) Temperature evolution of the PL spectra measured on GeS. The spectra are vertically shifted for clarity and some of them are multiplied by scaling factors for more clarity.

**Figure 4.**(

**a**) Atom displacements (green arrows) for the Raman-active modes. Axes indicate two view perspectives: armchair and zigzag directions. (

**b**) The calculated phonon dispersion of GeS. (

**c**) RS spectra measured on GeS at low (T = 5 K) and room (T = 300 K) temperatures. The spectra are vertically shifted for clarity.

**Figure 5.**Polar plots of the integrated intensities of the phonon modes: (

**a**) A${}_{\mathrm{g}}^{1}$, (

**b**) A${}_{\mathrm{g}}^{2}$, (

**c**) A${}_{\mathrm{g}}^{3}$, (

**d**) A${}_{\mathrm{g}}^{4}$, (

**e**) B${}_{\mathrm{g}}^{1}$, and (

**f**) B${}_{\mathrm{g}}^{2}$, measured on GeS at T = 300 K under 1.96 eV excitation. The green lines on polar plots are along polarization axes of modes.

**Figure 6.**Polar plots of the integrated intensities of the phonon modes B${}_{\mathbf{1}\mathbf{g}}^{2}$, A${}_{\mathbf{g}}^{3}$, and A${}_{\mathbf{g}}^{4}$ measured on GeS at T = 300 K under 2.54 eV, 2.41 eV, and 2.21 eV excitation. The green lines on polar plots are along polarization axes of modes.

**Figure 7.**The effect of the excitation energy on the polarization axes of three phonon modes: B${}_{1\mathrm{g}}^{2}$, A${}_{\mathrm{g}}^{3}$, and A${}_{\mathrm{g}}^{4}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zawadzka, N.; Kipczak, Ł.; Woźniak, T.; Olkowska-Pucko, K.; Grzeszczyk, M.; Babiński, A.; Molas, M.R.
Anisotropic Optical and Vibrational Properties of GeS. *Nanomaterials* **2021**, *11*, 3109.
https://doi.org/10.3390/nano11113109

**AMA Style**

Zawadzka N, Kipczak Ł, Woźniak T, Olkowska-Pucko K, Grzeszczyk M, Babiński A, Molas MR.
Anisotropic Optical and Vibrational Properties of GeS. *Nanomaterials*. 2021; 11(11):3109.
https://doi.org/10.3390/nano11113109

**Chicago/Turabian Style**

Zawadzka, Natalia, Łucja Kipczak, Tomasz Woźniak, Katarzyna Olkowska-Pucko, Magdalena Grzeszczyk, Adam Babiński, and Maciej R. Molas.
2021. "Anisotropic Optical and Vibrational Properties of GeS" *Nanomaterials* 11, no. 11: 3109.
https://doi.org/10.3390/nano11113109