Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Fabrication of CNTs
2.3. Fabrication of ZnO
2.4. Fabrication of ZnO/CNTs
2.5. Characterization Techniques
2.6. Gas-Sensing Measurements
3. Results and Discussion
3.1. Characterization of the Fabricated ZnO/CNTs Nanostructured Thin Film
3.1.1. Structural Properties
3.1.2. Morphological Analysis
3.1.3. Chemical Composition
3.1.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.5. Optical Properties
3.2. Gas-Sensing Measurements
3.3. Dynamic Response
3.4. Response and Recovery Time
3.5. Repeatability (Reducibility) and Stability
3.6. ZnO/CNTs Selectivity to CO2 Gas
3.7. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, S.; Jones, L.A.; Sabri, Y.M.; Bhargava, S.K.; Sunkara, M.V.; Ippolito, S.J. Facile conversion of zinc hydroxide carbonate to CaO-ZnO for selective CO2 gas detection. J. Colloid Interface Sci. 2019, 558, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Rheinhardt, J.H.; Singh, P.; Tarakeshwar, P.; Buttry, D.A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2017, 2, 454–461. [Google Scholar] [CrossRef]
- Diamond, J.; Profili, J.; Hamdan, A. Characterization of Various Air Plasma Discharge Modes in Contact with Water and Their Effect on the Degradation of Reactive Dyes. Plasma Chem. Plasma Process. 2019, 39, 1483–1498. [Google Scholar] [CrossRef]
- Hamdan, A.; Gagnon, C.; Aykul, M.; Profili, J. Characterization of a microwave plasma jet (TIAGO) in-contact with water: Application in degradation of methylene blue dye. Plasma Process. Polym. 2020, 17, 1900157. [Google Scholar] [CrossRef]
- Liu, J.-L.; Park, H.-W.; Hamdan, A.; Cha, M.S. In-liquid arc plasma jet and its application to phenol degradation. J. Phys. D Appl. Phys. 2018, 51, 114005. [Google Scholar] [CrossRef][Green Version]
- Soliman, N.K. Factors affecting CO oxidation reaction over nanosized materials: A review. J. Mater. Res. Technol. 2019, 8, 2395–2407. [Google Scholar] [CrossRef]
- Mehaney, A.; Ahmed, A.M. Theoretical design of porous phononic crystal sensor for detecting CO2 pollutions in air. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114353. [Google Scholar] [CrossRef]
- Zaki, S.E.; Mehaney, A.; Hassanein, H.M.; Aly, A.H. Fano resonance based defected 1D phononic crystal for highly sensitive gas sensing applications. Sci. Rep. 2020, 10, 17979. [Google Scholar] [CrossRef]
- Bochenkov, V.E.; Sergeev, G.B. Sensitivity, Selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Appl. 2010, 3, 31–52. [Google Scholar]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Shirage, P.M.; Rana, A.K.; Kumar, Y.; Sen, S.; Leonardi, S.G.; Neri, G. Sr- and Ni-doping in ZnO nanorods synthesized by a simple wet chemical method as excellent materials for CO and CO2 gas sensing. RSC Adv. 2016, 6, 82733–82742. [Google Scholar] [CrossRef][Green Version]
- Hsueh, T.J.; Lu, C.L. A hybrid YSZ/SnO2/MEMS SO2 gas sensor. RSC Adv. 2019, 9, 27800–27806. [Google Scholar] [CrossRef][Green Version]
- Nguyen, H.; Quy, C.T.; Hoa, N.D.; Lam, N.T.; Van Duy, N.; Van Quang, V.; Van Hieu, N. Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sens. Actuators B Chem. 2014, 193, 888–894. [Google Scholar] [CrossRef][Green Version]
- Tuantranont, A. (Ed.) Nanomaterials for Sensing Applications: Introduction and Perspective. In Applications of Nanomaterials in Sensors and Diagnostics; Springer Series on Chemical Sensors and Biosensors (Methods and Applications); Springer: Berlin/Heidelberg, Germany, 2012; Volume 14. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 2021, 360, 115544. [Google Scholar] [CrossRef]
- Liu, X.; Du, H.; Wang, P.; Lim, T.T.; Sun, X.W. A high-performance UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates. J. Mater. Chem. C 2014, 2, 9536–9542. [Google Scholar] [CrossRef]
- Kim, D.C.; Han, W.S.; Kong, B.H.; Cho, H.K.; Hong, C.H. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Phys. B Condens. Matter 2007, 401–402, 386–390. [Google Scholar] [CrossRef]
- Shahzad, S.; Javed, S.; Usman, M. A Review on Synthesis and Optoelectronic Applications of Nanostructured ZnO. Front. Mater. 2021, 8, 613825. [Google Scholar] [CrossRef]
- Kannan, P.K.; Saraswathi, R.; Rayappan, J.B.B. CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceram. Int. 2014, 40, 13115–13122. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Shaban, M.; El Sayed, A.M. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Patil, A.; Dighavkar, C.; Borse, R. Al doped ZnO thick films as CO2 gas sensors. JOAM 2011, 13, 1331–1337. [Google Scholar]
- Chemical, T.A.; Roberts, M.E.; Lemieux, M.C.; Bao, Z. Sorted and Aligned Single-Walled. ACS Nano 2009, 3, 3287–3293. [Google Scholar]
- Van Hieu, N.; Thuy, L.T.B.; Chien, N.D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens. Actuators B Chem. 2008, 129, 888–895. [Google Scholar] [CrossRef]
- Cao, F.; Li, C.; Li, M.; Li, H.; Yang, B. ZnO nanorod/multi-walled carbon nanotube nanocomposite for ethanol vapour detection. Micro Nano Lett. 2018, 13, 779–783. [Google Scholar] [CrossRef]
- Ding, M.; Sorescu, D.C.; Star, A. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids. J. Am. Chem. Soc. 2013, 135, 9015–9022. [Google Scholar] [CrossRef]
- Alharbi, N.D.; Ansari, M.S.; Salah, N.; Khayyat, S.A.; Khan, Z.H. Zinc oxide-multi walled carbon nanotubes nanocomposites for carbon monoxide gas sensor application. J. Nanosci. Nanotechnol. 2016, 16, 439–447. [Google Scholar] [CrossRef]
- Schütt, F.; Postica, V.; Adelung, R.; Lupan, O. Single and Networked ZnO-CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors. ACS Appl. Mater. Interfaces 2017, 9, 23107–23118. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Kaneti, Y.V.; Yuliarto, B.; Dipojono, H.K.; Takei, T.; You, J.; Yamauchi, Y. Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens. Actuators B Chem. 2018, 261, 241–251. [Google Scholar] [CrossRef][Green Version]
- Li, X.; Wang, J.; Xie, D.; Xu, J.; Xia, Y.; Xiang, L. Enhanced p-type NO2-sensing properties of ZnO nanowires utilizing CNTs electrode. Mater. Lett. 2017, 206, 18–21. [Google Scholar] [CrossRef]
- Zayed, M.; Ahmed, A.M.; Shaban, M. Synthesis and characterization of nanoporous ZnO and Pt/ZnO thin films for dye degradation and water splitting applications. Int. J. Hydrogen Energy 2019, 44, 17630–17648. [Google Scholar] [CrossRef]
- Stella, C.; Soundararajan, N.; Ramachandran, K. Chunk shaped ZnO/Co3O4 nanocomposites for ethanol sensor. Adv. Mater. Lett. 2016, 7, 652–658. [Google Scholar] [CrossRef]
- Buazar, F.; Bavi, M.; Kroushawi, F.; Halvani, M.; Khaledi-Nasab, A.; Hossieni, S.A. Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. J. Exp. Nanosci. 2015, 11, 175–184. [Google Scholar] [CrossRef][Green Version]
- Van Bael, M.K.; Elen, K.; Kelchtermans, A.; Van Den Rul, H.; Peeters, R.; Mullens, J.; Hardy, A. Comparison of two novel solution-based routes for the synthesis of equiaxed zno nanoparticles. J. Exp. Nanosci. 2011, 2011. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, L.; Wang, D.; Lin, Y.; He, D.; Xie, T. UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres. Sens. Actuators B Chem. 2012, 161, 292–297. [Google Scholar] [CrossRef]
- Zhou, M.; Gao, X.; Hu, Y.; Chen, J.; Hu, X. Uniform hamburger-like mesoporous carbon-incorporated ZnO nanoarchitectures: One-pot solvothermal synthesis, high adsorption and visible-light photocatalytic decolorization of dyes. Appl. Catal. B Environ. 2013, 138–139, 1–8. [Google Scholar] [CrossRef]
- Vyas, R.; Sharma, S.; Gupta, P.; Prasad, A.K.; Tyagi, A.K.; Sachdev, K.; Sharma, S.K. CNT-ZnO nanocomposite thin films: O2 and NO2 sensing. Adv. Mater. Res. 2012, 585, 235–239. [Google Scholar] [CrossRef]
- Mary, J.A.; Vijaya, J.J.; Dai, J.H.; Bououdina, M.; John Kennedy, L.; Song, Y. Experimental and first-principles DFT studies of electronic, optical and magnetic properties of cerium-manganese codoped zinc oxide nanostructures. Mater. Sci. Semicond. Process. 2015, 34, 27–38. [Google Scholar] [CrossRef]
- Shaban, M.; El Sayed, A.M. Influences of lead and magnesium co-doping on the nanostructural, optical properties and wettability of spin coated zinc oxide films. Mater. Sci. Semicond. Process. 2015, 39, 136–147. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Norton, M.G. X-Rays and Diffraction. In X-ray Diffraction; Springer: New York, NY, USA, 1998; pp. 3–19. [Google Scholar]
- Cao, B.; Cai, W. From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 2008, 112, 680–685. [Google Scholar] [CrossRef]
- Shaban, M.; Ali, S.; Rabia, M. Design and application of nanoporous graphene oxide film for CO2, H2, and C2H2 gases sensing. J. Mater. Res. Technol. 2019, 8, 4510–4520. [Google Scholar] [CrossRef]
- Nagarjuna, Y.; Hsiao, Y.J. Au doping zno nanosheets sensing properties of ethanol gas prepared on mems device. Coatings 2020, 10, 945. [Google Scholar] [CrossRef]
- Zaki, S.E.; Basyooni, M.A.; Shaban, M.; Rabia, M.; Eker, Y.R.; Attia, G.F.; Yilmaz, M.; Ahmed, A.M. Role of oxygen vacancies in vanadium oxide and oxygen functional groups in graphene oxide for room temperature CO2 gas sensors. Sens. Actuators A Phys. 2019, 294, 17–24. [Google Scholar] [CrossRef]
- Bunaciu, A.A.; Aboul-Enein, H.Y.; Fleschin, S. Application of fourier transform infrared spectrophotometry in pharmaceutical drugs analysis. Appl. Spectrosc. Rev. 2010, 45, 206–219. [Google Scholar] [CrossRef]
- Aroui, H.; Orphal, J.; Kwabia, F. Fourier Transform Infrared Spectroscopy for the Measurement of Spectral Line Profiles. In Fourier Transform—Materials Analysis; Intech Open: London, UK, 2012. [Google Scholar]
- Wen, S.; Shen, Q.; Wei, Q.; Yan, C.; Zhu, W.; Shi, Y.; Yang, J.; Shi, Y. Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J. Mater. Process. Technol. 2015, 225, 93–102. [Google Scholar] [CrossRef]
- Shi, F.; Ross, P.N.; Zhao, H.; Liu, G.; Somorjai, G.A.; Komvopoulos, K. A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-fourier transform infrared spectroscopy. J. Am. Chem. Soc. 2015, 137, 3181–3184. [Google Scholar] [CrossRef]
- Rapid Monitoring of the Spoilage of Minced Beef Stored under Conventionally and Active Packaging Conditions Using Fourier Transform Infrared Spectroscopy in Tandem with Chemometrics|Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S0309174008003379?token=40C5E0F0DD2D3BB31D2427C0D28346E9D65D2047C0C1E52BF71667DF2413C4C4B316A76ACA799F36E563BC58177B78F3&originRegion=eu-west-1&originCreation=20210618221715 (accessed on 19 June 2021).
- Hosseini Largani, S.; Akbarzadeh Pasha, M. The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 2017, 7, 25–33. [Google Scholar] [CrossRef][Green Version]
- Wang, X.; Li, X.; Zhao, Y.; Chen, Y.; Yu, J.; Wang, J. The influence of oxygen functional groups on gas-sensing properties of reduced graphene oxide (rGO) at room temperature. RSC Adv. 2016, 6, 52339–52346. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Rabia, M.; Shaban, M. The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv. 2020, 10, 14458–14470. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef][Green Version]
- Ahn, M.W.; Park, K.S.; Heo, J.H.; Park, J.G.; Kim, D.W.; Choi, K.J.; Lee, J.H.; Hong, S.H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett. 2008, 93, 263103. [Google Scholar] [CrossRef]
- Hamdelou, S.; Guergouri, K.; Arab, L. The effect of the starting powders particle size on the electrical properties of sintered Co doped ZnO varistors. Appl. Nanosci. 2015, 5, 817–825. [Google Scholar] [CrossRef][Green Version]
- Habib, M.; Hussain, S.S.; Riaz, S.; Naseem, S. Preparation and Characterization of ZnO Nanowires and their Applications in CO2 Gas Sensors. Mater. Today: Proc. 2015, 2, 5714–5719. [Google Scholar] [CrossRef]
- Kanaparthi, S.; Singh, S.G. Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection. ACS Appl. Nano Mater. 2019, 2, 700–706. [Google Scholar] [CrossRef]
- Shokry Hassan, H.; Kashyout, A.B.; Morsi, I.; Nasser, A.A.A.; Ali, I. Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO: In nanomaterials. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 216–221. [Google Scholar] [CrossRef][Green Version]
- Robinson, J.T.; Perkins, F.K.; Snow, E.S.; Wei, Z.; Sheehan, P.E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140. [Google Scholar] [CrossRef][Green Version]
- Haidry, A.A.; Xie, L.; Wang, Z.; Li, Z. Hydrogen sensing and adsorption kinetics on ordered mesoporous anatase TiO2 surface. Appl. Surf. Sci. 2020, 500, 144219. [Google Scholar] [CrossRef]
- Ilnicka, A.; Lukaszewicz, J.P. Graphene-based hydrogen gas sensors: A review. Processes 2020, 8, 633. [Google Scholar] [CrossRef]
- Biswas, M.R.U.D.; Oh, W.-C. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semiconductor–polymer nanocomposites. RSC Adv. 2019, 9, 11484–11492. [Google Scholar] [CrossRef][Green Version]
- Li, S.; Lin, P.; Zhao, L.; Wang, C.; Liu, D.; Liu, F.; Sun, P.; Liang, X.; Liu, F.; Yan, X.; et al. The room temperature gas sensor based on Polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuators B Chem. 2018, 259, 505–513. [Google Scholar] [CrossRef]
- Shendage, S.S.; Patil, V.L.; Vanalakar, S.A.; Patil, S.P.; Bhosale, J.L.; Kim, J.H.; Patil, P.S. Characterization and Gas Sensing Properties of Spin Coated WO3 Thin Films. Z. Phys. Chem. 2020, 234, 1819–1834. [Google Scholar] [CrossRef]
- Shah, A.H. Applications of Carbon Nanotubes and Their Polymer Nanocomposites for Gas Sensors. In Carbon Nanotubes Current Progress of Their Polymer Composites; Intech Open: London, UK, 2016. [Google Scholar]
- Morsy, M.; Yahia, I.S.; Zahran, H.Y.; Meng, F.; Ibrahim, M. Portable and Battery Operated Ammonia Gas Sensor Based on CNTs/rGO/ZnO Nanocomposite. J. Electron. Mater. 2019, 48, 7328–7335. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, F.; Jiang, L.; Liu, X.; Song, X.; Qin, X.; Li, X. Improved Sensing Properties of Thermal Conductivity-Type CO2 Gas Sensors by Loading Multi-Walled Carbon Nanotubes Into Nano-Al2O3 Powders. Front. Energy Res. 2021, 9, 96. [Google Scholar] [CrossRef]
- Choi, M.S.; Park, T.; Kim, W.J.; Hur, J. High-performance ultraviolet photodetector based on a zinc oxide nanoparticle@single-walled carbon nanotube heterojunction hybrid film. Nanomaterials 2020, 10, 395. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guo, R.; Guo, Y.; Duan, H.; Li, H.; Liu, H. Synthesis of Orthorhombic Perovskite-Type ZnSnO3 Single-Crystal Nanoplates and Their Application in Energy Harvesting. ACS Appl. Mater. Interfaces 2017, 9, 8271–8279. [Google Scholar] [CrossRef] [PubMed]
- Juang, F.R.; Chen, B.Y. Effect of adding ZHS microcubes on ZnO nanorods for CO2 gas sensing applications. Solid. State. Electron. 2020, 164, 107711. [Google Scholar] [CrossRef]
- Potirak, P.; Pecharapa, W.; Techitdheera, W. Microwave-assisted synthesis of ZnO/MWCNT hybrid nanocomposites and their alcohol-sensing properties. J. Exp. Nanosci. 2013, 9, 96–105. [Google Scholar] [CrossRef]
- Son, M.; Pak, Y.; Chee, S.S.; Auxilia, F.M.; Kim, K.; Lee, B.K.; Lee, S.; Kang, S.K.; Lee, C.; Lee, J.S.; et al. Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2018, 11, 3529–3536. [Google Scholar] [CrossRef]
- Willa, C.; Yuan, J.; Niederberger, M.; Koziej, D. When nanoparticles meet poly(ionic liquid)s: Chemoresistive CO2 sensing at room temperature. Adv. Funct. Mater. 2015, 25, 2537–2542. [Google Scholar] [CrossRef][Green Version]
- Nemade, K.R.; Waghuley, S.A. Carbon dioxide gas sensing application of graphene/Y2O3 quantum dots composite. Int. J. Mod. Phys. 2013, 22, 380–384. [Google Scholar]
- Lee, Z.Y.; Hawari, H.F.B.; Djaswadi, G.W.B.; Kamarudin, K. A highly sensitive room temperature CO2 gas sensor based on SnO2-rGo hybrid composite. Materials 2021, 14, 522. [Google Scholar] [CrossRef] [PubMed]
Parameters | ZnO | ZnO/CNTs |
---|---|---|
Position (2θ°) | 34.9024 | 34.8877 |
d-spacing (Å) | 2.5707 | 2.57175 |
Relative Intensity (%) | 100 | 100 |
Crystallite size (nm) | 17.7 | 27.6 |
Micro-strain (%) | 0.197346 | 0.255058 |
(a = b) (Å) | 3.22271 | 3.20763 |
c (Å) | 5.1435 | 5.1414 |
V (Å3) | 46.263 | 45.786 |
U | 0.38086 | 0.37974 |
L (Å) | 1.95895 | 1.95241 |
σ × 10−6 | 2.35537 | 3.93763 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, R.; Gamal, A.; Zayed, M.; Ahmed, A.M.; Shaban, M.; BinSabt, M.; Rabia, M.; Hamdy, H. Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature. Nanomaterials 2021, 11, 3087. https://doi.org/10.3390/nano11113087
Saad R, Gamal A, Zayed M, Ahmed AM, Shaban M, BinSabt M, Rabia M, Hamdy H. Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature. Nanomaterials. 2021; 11(11):3087. https://doi.org/10.3390/nano11113087
Chicago/Turabian StyleSaad, Rana, Ahmed Gamal, Mohamed Zayed, Ashour M. Ahmed, Mohamed Shaban, Mohammad BinSabt, Mohamed Rabia, and Hany Hamdy. 2021. "Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature" Nanomaterials 11, no. 11: 3087. https://doi.org/10.3390/nano11113087