Disperse-and-Mix: Oil as an ‘Entrance Door’ of Carbon-Based Fillers to Rubber Composites
Abstract
:1. Introduction
1.1. Rubber Loaded with Carbon-Based Fillers
1.2. Rubber Composites for Tire Tread
1.2.1. The Rubber Matrix
1.2.2. Carbon-Based Fillers
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composites
2.3. Characterization
3. Results and Discussion
3.1. Rubber Composites Systems
Dispersibility of Fillers in the Rubber
3.2. Thermal Conductivity
3.3. Mechanical Properties
3.4. Abrasion Resistance
3.5. The Overall Efficiency of the Various Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Öter, M.; Karaagac, B.; Deniz, V. Substitution of Aromatic Processing Oils in Rubber Compounds. KGK Kautsch. Gummi Kunstst. 2011, 64, 48–51. [Google Scholar]
- Gent, A.N.; Walter, J.D. The Pneumatic Tire; The University of Akron: Akron, OH, USA, 2006. [Google Scholar] [CrossRef]
- Ma, P.C.; Liu, M.Y.; Zhang, H.; Wang, S.Q.; Wang, R.; Wang, K.; Wong, Y.K.; Tang, B.Z.; Hong, S.H.; Paik, K.W.; et al. Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Appl. Mater. Interfaces 2009, 1, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.H.; Jung, W.B.; Kim, H.J.; Jung, H.T. Highly Enhanced Tire Performance Achieved by Using Combined Carbon Nanotubes and Soybean Oil. J. Appl. Polym. Sci. 2021, 138, 49945. [Google Scholar] [CrossRef]
- Lechtenboehmer, A.; Moneypenny, H.G.; Mersch, F. Review of Polymer Interfaces in Tyre Technology. Br. Polym. J. 1990, 22, 265–301. [Google Scholar] [CrossRef]
- Fu, J.F.; Yu, W.Q.; Dong, X.; Chen, L.Y.; Jia, H.S.; Shi, L.Y.; Zhong, Q.D.; Deng, W. Mechanical and Tribological Properties of Natural Rubber Reinforced with Carbon Blacks and Al2O3 Nanoparticles. Mater. Des. 2013, 49, 336–346. [Google Scholar] [CrossRef]
- Bokobza, L. Natural Rubber Nanocomposites: A Review. Nanomaterials 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Valentini, L.; Bittolo Bon, S.; Lopez-Manchado, M.A.; Verdejo, R.; Pappalardo, L.; Bolognini, A.; Alvino, A.; Borsini, S.; Berardo, A.; Pugno, N.M. Synergistic Effect of Graphene Nanoplatelets and Carbon Black in Multifunctional EPDM Nanocomposites. Compos. Sci. Technol. 2016, 128, 123–130. [Google Scholar] [CrossRef]
- Zhan, Y.H.; Liu, G.Q.; Xia, H.S.; Yan, N. Natural Rubber/Carbon Black/Carbon Nanotubes Composites Prepared through Ultrasonic Assisted Latex Mixing Process. Plast. Rubber Compos. 2011, 40, 32–39. [Google Scholar] [CrossRef]
- Mondal, S.; Khastgir, D. Elastomer Reinforcement by Graphene Nanoplatelets and Synergistic Improvements of Electrical and Mechanical Properties of Composites by Hybrid Nano Fillers of Graphene-Carbon Black & Graphene-MWCNT. Compos. Part A Appl. Sci. Manuf. 2017, 102, 154–165. [Google Scholar] [CrossRef]
- Malas, A.; Das, C.K.; Das, A.; Heinrich, G. Development of Expanded Graphite Filled Natural Rubber Vulcanizates in Presence and Absence of Carbon Black: Mechanical, Thermal and Morphological Properties. Mater. Des. 2012, 39, 410–417. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, L.Q.; Tian, M. Mechanical and Tribological Properties of Acrylonitrile-Butadiene Rubber Filled with Graphite and Carbon Black. Mater. Des. 2012, 39, 450–457. [Google Scholar] [CrossRef]
- Wang, X.; Tang, F.; Cao, Q.; Qi, X.; Pearson, M.; Li, M.; Pan, H.; Zhang, Z.; Lin, Z. Comparative Study of Three Carbon Additives: Carbon Nanotubes, Graphene, and Fullerene-C60, for Synthesizing Enhanced Polymer Nanocomposites. Nanomaterials 2020, 10, 838. [Google Scholar] [CrossRef]
- Heeley, E.L.; Hughes, D.J.; Crabb, E.; Kershaw, M.; Shebanova, O.; Leung, S.; McNally, T. Structure Evolution in Poly(Ethylene Terephthalate) (PET)—Multi-Walled Carbon Nanotube (MWCNT) Composite Films during in-Situ Uniaxial Deformation. Polymer 2016, 92, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.P.; Gupta, V.K.; Singh, A.P. Graphene and Carbon Nanotube Reinforced Epoxy Nanocomposites: A Review. Polymer 2019, 180, 121724. [Google Scholar] [CrossRef]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, R.J.; Ajayan, P.M. Composites with Carbon Nanotubes and Graphene: An Outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.G.; Lee, C.K.; Lee, D.; Song, S.H. High-Performance Tires Based on Graphene Coated with Zn-Free Coupling Agents. J. Ind. Eng. Chem. 2018, 66, 78–85. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Zhu, Z.; Zhang, Y. Study on Thermally Conductive ESBR Vulcanizates. Polym. Bull. 2011, 67, 1091–1104. [Google Scholar] [CrossRef]
- Shachar-Michaely, G.; Pinsk, N.; Cullari, L.L.; Nadiv, R.; Regev, O. Mixed Dimensionality: Highly Robust and Multifunctional Carbon-Based Composites. Carbon 2021, 176, 339–348. [Google Scholar] [CrossRef]
- Yue, L.; Pircheraghi, G.; Monemian, S.A.; Manas-Zloczower, I. Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets—Dispersion and Synergy Effects. Carbon 2014, 78, 268–278. [Google Scholar] [CrossRef]
- Anti-Static & Reinforcing Agent for NBR, NR/BR, SBR Rubber. Available online: https://tuball.com/additives/603 (accessed on 19 April 2021).
- Nadiv, R.; Shachar, G.; Peretz-Damari, S.; Varenik, M.; Levy, I.; Buzaglo, M.; Ruse, E.; Regev, O. Performance of Nano-Carbon Loaded Polymer Composites: Dimensionality Matters. Carbon 2018, 126, 410–418. [Google Scholar] [CrossRef]
- Ghislandi, M.; Tkalya, E.; Marinho, B.; Koning, E.; De With, G. Electrical Conductivities of Carbon Powder Nanofillers and Their Latex-Based Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2013, 53, 145–151. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater 2011, 10, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Salgado, R.A.; Lee, B.; Sumant, A.V.; Rajh, T.; Johnson, C.; Balandin, A.A.; Shevchenko, E.V. Design of Lithium Cobalt Oxide Electrodes with High Thermal Conductivity and Electrochemical Performance Using Carbon Nanotubes and Diamond Particles. Carbon N. Y. 2018, 129, 702–710. [Google Scholar] [CrossRef]
- Rubber Process Oil Market—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2018–2026. Available online: https://www.transparencymarketresearch.com/rubber-process-oil-market.html (accessed on 25 November 2020).
- Rubber Process Oil. Available online: http://eaglepetrochem.com/en/products/285 (accessed on 16 June 2021).
- Continental—Material Handling—Industrial Pneumatic Tires. Available online: https://www.continental-tires.com/specialty/material-handling/industrial-pneumatic-tires (accessed on 28 January 2020).
- Chandra, A.K.; Kumar, N.R. Polymer Nanocomposites for Automobile Engineering Applications. In Properties and Applications of Polymer Nanocomposites: Clay and Carbon Based Polymer Nanocomposites; Springer: Berlin, Germany, 2017; pp. 139–172. [Google Scholar] [CrossRef]
- Netscher, N.; Aminossadati, S.; Hooman, K. A Review of Patents in Tyre Cooling. Recent Pat. Eng. 2008, 2, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Frank, F.; Hofferberth, W. Mechanics of the Pneumatic Tire. Rubber Chem. Technol. 1967, 40, 271–322. [Google Scholar] [CrossRef]
- Rios, S.; Chicurel, R.; Del Castillo, L.F. Potential of Particle and Fibre Reinforcement of Tyre Tread Elastomers. Mater. Des. 2001, 22, 369–374. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in Hybrid Polymer/Nanocarbon Composites. A Review. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G. Electrical Conductivity of Compacts of Graphene, Multi-Wall Carbon Nanotubes, Carbon Black, and Graphite Powder. Powder Technol. 2012, 221, 351–358. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Bhuyan, B.; Srivastava, S.K.; Pionteck, J. Multiwalled Carbon Nanotubes/Hectorite Hybrid Reinforced Styrene Butadiene Rubber Nanocomposite: Preparation and Properties. Polym. Technol. Mater. 2019, 58, 537–546. [Google Scholar] [CrossRef]
- Galimberti, M. Rubber Clay Nanocomposites. In Advanced Elastomers—Technology, Properties and Applications; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Tomar, S. Innovative Nanotechnology Applications in Automobiles. Int. J. Eng. Res. Technol. 2012, 1, 1–5. [Google Scholar]
- Chebattina, K.R.R.; Srinivas, V.; Mohan Rao, N. Effect of Size of Multiwalled Carbon Nanotubes Dispersed in Gear Oils for Improvement of Tribological Properties. Adv. Tribol. 2018, 2018, 2328108. [Google Scholar] [CrossRef]
- Abrasion Tester—Abrasion Check | Gibitre Instruments. Available online: https://www.gibitre.it/page_sin.php?ProdottoN=Abrasi&from=menu (accessed on 28 June 2020).
- Gustafsson, S.E. Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials. Rev. Sci. Instrum. 1991, 62, 797–804. [Google Scholar] [CrossRef]
- He, Y. Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations. Thermochimica Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- Al-Ajlan, S.A. Measurements of Thermal Properties of Insulation Materials by Using Transient Plane Source Technique. Appl. Eng. 2006, 26, 2184–2191. [Google Scholar] [CrossRef]
- Ohayon-Lavi, A.; Buzaglo, M.; Ligati, S.; Peretz-Damari, S.; Shachar, G.; Pinsk, N.; Riskin, M.; Schatzberg, Y.; Genish, I.; Regev, O. Compression-Enhanced Thermal Conductivity of Carbon Loaded Polymer Composites. Carbon 2020, 163, 333–340. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Itkis, M.E.; Bekyarova, E.; Haddon, R.C. Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C 2007, 111, 7565–7569. [Google Scholar] [CrossRef]
- Yu, A.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatele—Carbon Nanotube Filler for Epoxy Composites. Adv. Mater. 2008, 20, 4740–4744. [Google Scholar] [CrossRef]
- Safdari, M.; Al-Haik, M.S. Synergistic Electrical and Thermal Transport Properties of Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets. Carbon 2013, 64, 111–121. [Google Scholar] [CrossRef]
- Huang, X.; Zhi, C.; Jiang, P. Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites. J. Phys. Chem. C 2012, 116, 23812–23820. [Google Scholar] [CrossRef]
- Nan, C.W.; Liu, G.; Lin, Y.; Li, M. Interface Effect on Thermal Conductivity of Carbon Nanotube Composites. Appl. Phys. Lett. 2004, 85, 3549–3551. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Mishra, Y.K. Nanocarbon Reinforced Rubber Nanocomposites: Detailed Insights about Mechanical, Dynamical Mechanical Properties, Payne, and Mullin Effects. Nanomaterials 2018, 8, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, B.; Kim, H.G.; Lee, J.H.; Arepalli, S.; Nah, C. Carbon Nanotube-Reinforced Elastomeric Nanocomposites: A Review. Int. J. Smart Nano Mater. 2015, 6, 211–238. [Google Scholar] [CrossRef]
- Das, A.; Kasaliwal, G.R.; Jurk, R.; Boldt, R.; Fischer, D.; Stöckelhuber, K.W.; Heinrich, G. Rubber Composites Based on Graphene Nanoplatelets, Expanded Graphite, Carbon Nanotubes and Their Combination: A Comparative Study. Compos. Sci. Technol. 2012, 72, 1961–1967. [Google Scholar] [CrossRef]
- Mensah, B.; Gupta, K.C.; Kim, H.; Wang, W.; Jeong, K.U.; Nah, C. Graphene-Reinforced Elastomeric Nanocomposites: A Review. Polym. Test. 2018, 68, 160–184. [Google Scholar] [CrossRef]
- Scott, B.D.; Safiuddin, M. Abrasion Resistance of Concrete-Design, Construction and Case Study. Concr. Res. Lett. 2015, 6, 136–148. [Google Scholar]
- Lorenz, H.; Fritzsche, J.; Das, A.; Stöckelhuber, K.W.; Jurk, R.; Heinrich, G.; Klüppel, M. Advanced Elastomer Nano-Composites Based on CNT-Hybrid Filler Systems. Compos. Sci. Technol. 2009, 69, 2135–2143. [Google Scholar] [CrossRef]
- Klüuppel, M.; Müowes, M.M.; Lang, A.; Plagge, J.; Wunde, M.; Fleck, F.; Karl, C.W. Characterization and Application of Graphene Nanoplatelets in Elastomers. In Advances in Polymer Science; Springer LLC: New York, NY, USA, 2017; Volume 275, pp. 319–360. [Google Scholar] [CrossRef]
CNT | GNP | Graphite | CB | |
---|---|---|---|---|
Dimensionality | 1D | 2D | 3D | 3D |
Structure | cylindrical | Plate-like | Stacked plates | Ball-like |
Aspect ratio | 2000 [21] | 320 [22] | 1 [22] | ~1 [23] |
Intrinsic Thermal conductivity [W m−1 K−1] | 3000 [24] | 2000 [24] | 2000 [24] | 1 [25] |
Intrinsic Tensile strength [GPa] | 15–150 [16] | 20–200 [16] |
CNT | GNP | Graphite | |
---|---|---|---|
Maximum loading in oil [weight fraction] | 0.10 | 0.28 | 0.77 |
REF | CNT | GNP | CNT + GNP | Graphite | CNT + Graphite | GNP + Graphite | CNT + GNP + Graphite | |
---|---|---|---|---|---|---|---|---|
CNT | - | 5.4 × 10−3 | - | 5.4 × 10−3 | - | 5.0 × 10−3 | - | 4.9 × 10−3 |
GNP | - | - | 1.04 × 10−2 | 6.2 × 10−3 (H-15) | - | - | 1.13 × 10−2 (H-15) | 6.8 × 10−3 (H-15) |
Graphite | - | - | - | - | 3.86 × 10−2 | 5.38 × 10−2 | 6.13 × 10−2 | 5.38 × 10−2 |
TFF | 0 | 5.4 × 10−3 | 1.04 × 10−2 | 1.16 × 10−2 | 3.86 × 10−2 | 5.88 × 10−2 | 7.26 × 10−2 | 6.55 × 10−2 |
| | | | | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shachar Michaely, G.; Alhazov, D.; Genkin, M.; Buzaglo, M.; Regev, O. Disperse-and-Mix: Oil as an ‘Entrance Door’ of Carbon-Based Fillers to Rubber Composites. Nanomaterials 2021, 11, 3048. https://doi.org/10.3390/nano11113048
Shachar Michaely G, Alhazov D, Genkin M, Buzaglo M, Regev O. Disperse-and-Mix: Oil as an ‘Entrance Door’ of Carbon-Based Fillers to Rubber Composites. Nanomaterials. 2021; 11(11):3048. https://doi.org/10.3390/nano11113048
Chicago/Turabian StyleShachar Michaely, Gal, Dimitry Alhazov, Michael Genkin, Matat Buzaglo, and Oren Regev. 2021. "Disperse-and-Mix: Oil as an ‘Entrance Door’ of Carbon-Based Fillers to Rubber Composites" Nanomaterials 11, no. 11: 3048. https://doi.org/10.3390/nano11113048
APA StyleShachar Michaely, G., Alhazov, D., Genkin, M., Buzaglo, M., & Regev, O. (2021). Disperse-and-Mix: Oil as an ‘Entrance Door’ of Carbon-Based Fillers to Rubber Composites. Nanomaterials, 11(11), 3048. https://doi.org/10.3390/nano11113048