High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect
Abstract
:1. Introduction
2. Structure Design and Calculation Method
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Yu, J. Bifunctional terahertz absorber with a tunable and switchable property between broadband and dual-band. Opt. Express 2020, 28, 25225–25237. [Google Scholar] [CrossRef]
- Ju, Z.Z.; Deng, M.; Wang, J.; Chen, L. Reconfigurable multifrequency and wide-angle directional beaming of light from a subwavelength metal slit with graphene metasurfaces. Opt. Lett. 2020, 45, 2882–2885. [Google Scholar] [CrossRef]
- Wang, Y.P.; You, J.W.; Lan, Z.H.; Panoiu, N.C. Topological valley plasmon transport in bilayer graphene metasurfaces for sensing applications. Opt. Lett. 2020, 45, 3151–3154. [Google Scholar] [CrossRef]
- Heidari, M.; Ahmadi, V. Graphene-based mid-infrared plasmonic isolator with multimode interferometer. Opt. Lett. 2020, 45, 5764–5767. [Google Scholar] [CrossRef]
- Shi, S.F.; Zeng, B.; Han, H.L.; Hong, X.; Tsai, H.Z.; Jung, H.S.; Zett, A.; Crommie, M.F.; Wang, F. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett. 2015, 15, 372–377. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, Z.H.; Xu, W.; Zhang, J.F.; Guo, C.C.; Liu, K.; Yuan, X.D.; Qin, S.Q. Broadband wave absorption in single-layered and nanostructured graphene based on far-field interaction effect. Opt. Express 2017, 25, 9579–9586. [Google Scholar] [CrossRef]
- Fan, Y.S.; Guo, C.C.; Zhu, Z.H.; Xu, W.; Wu, F.; Yuan, X.D.; Qin, S.Q. Monolayer-graphene-based perfect absorption structures in the near infrared. Opt. Express 2017, 25, 13079–13086. [Google Scholar] [CrossRef]
- Yan, Z.D.; Zhu, Q.; Wan, M.J.; Lu, X.; Pu, X.T.; Tang, C.J.; Yu, L.L. Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing. Opt. Express 2020, 28, 6095–6101. [Google Scholar] [CrossRef]
- Yang, J.W.; Zhu, Z.H.; Zhang, J.F.; Guo, C.C.; Xu, W.; Liu, K.; Yuan, X.D.; Qin, S.Q. Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Sci. Rep. 2018, 8, 3239. [Google Scholar] [CrossRef]
- Hao, Q.Q.; Guo, J.; Yin, L.Y.; Ning, T.Y.; Ge, Y.Q.; Liu, J. Watt-level ultrafast bulk laser with a graphdiyne saturable absorber mirror. Opt. Lett. 2020, 45, 5554–5557. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Lee, J.U.; Hong, S.M.; Lee, C.W.; Hwang, S.H.; Cho, S.C.; Shin, B.S. Highly skin-conformal laser-induced graphene-based human motion monitoring sensor. Nanomaterials 2021, 11, 951. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, R.Z.; Li, H.; Wang, X.Y.; Lu, H.L.; Qian, K.; Li, G.; Huang, L.; Lin, X.; Zhang, Y.Y.; et al. Sizable band gap in epitaxial bilayer graphene induced by silicene intercalation. Nano Lett. 2020, 20, 2674–2680. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Q.; Zhou, M.; Liu, F.; Shen, H.; Wei, Z.; Wang, F.; Tan, C.; Meng, H. Humidity sensor based on a grapheme oxide-coated few-mode fiber Mach-Zehnder interferometer. Opt. Express 2020, 28, 24682–24692. [Google Scholar] [CrossRef]
- Andryieuski, A.; Lavrinenko, A.V. Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach. Opt. Express 2013, 21, 9144–9155. [Google Scholar] [CrossRef] [Green Version]
- Han, J.Z.; Chen, R.S. Tunable broadband terahertz absorber based on a single-layer graphene metasurface. Opt. Express 2020, 28, 30289. [Google Scholar] [CrossRef]
- Mirnia, S.E.; Lail, B.A. Dynamically tunable reflecting near-infrared bandpass filter based on a hybrid graphene–nanometallic structure. Appl. Optics 2020, 59, 5608–5614. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Jessop, D.S.; Shah, Y.D.; Sibik, J.; Zeitler, J.A.; Kidambi, P.R.; Hofmann, S.; Beere, H.E.; Ritchie, D.A. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano 2014, 8, 2548–2554. [Google Scholar] [CrossRef]
- Grande, M.; Vincenti, M.A.; Stomeo, T.; Bianco, G.V.; de Ceglia, D.; Aközbek, N.; Petruzzelli, V.; Bruno, G.; De Vittorio, M.; Scalora, M.; et al. Graphene-based perfect optical absorbers harnessing guided mode resonances. Opt. Express 2015, 23, 21032–21042. [Google Scholar] [CrossRef]
- Liu, B.; Yu, W.J.; Yan, Z.D.; Tang, C.J.; Chen, J.; Gu, P.; Liu, Z.Q.; Huang, Z. Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode. Opt. Express 2020, 28, 24908–24917. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Farhat, M.; Bağcı, H. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. 2013, 3, 2105. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.G.; Kim, T.Y.; Suk, J.W. Activated graphene deposited on porous Cu mesh for supercapacitors. Nanomaterials 2021, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.J.; Guo, Y.B.; Zhou, Y.G.; Huang, X.D.; Yang, G.Q.; Zhu, J.F. Tunable dual-band terahertz absorber with all-dielectric configuration based on grapheme. Opt. Express 2020, 28, 31524–31534. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wang, T.; Xiao, S.Y.; Yan, X.C.; Cheng, L.E. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt. Express 2017, 25, 27028–27036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Heo, H.J.; Kim, S. High fabrication-tolerant narrowband perfect graphene absorber based on guided-mode resonance in distributed Bragg reflector. Sci. Rep. 2019, 9, 4294. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.B.; Shen, L.; Xu, H.T.; Deng, H.D.; Li, Y.X. Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals. Sci. Rep. 2016, 6, 32312. [Google Scholar] [CrossRef]
- Liu, F.; Chen, L.; Guo, Q.; Chen, J.; Zhao, X.; Shi, W. Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths. Opt. Express 2015, 23, 21097–21106. [Google Scholar] [CrossRef]
- Liao, Y.L.; Zhao, Y. Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber. Opt. Express 2017, 25, 3208–32089. [Google Scholar] [CrossRef]
- Yildirim, D.U.; Ghobadi, A.; Ozbay, E. Near-absolute polarization insensitivity in graphene based ultra-narrowband perfect visible light absorber. Sci. Rep. 2018, 8, 15210. [Google Scholar] [CrossRef] [Green Version]
- Caridad, J.M.; Winters, S.; McCloskey, D.; Duesberg, G.S.; Donegan, J.F.; Krstić, V. Control of the plasmonic near-field in metallic nanohelices. Nanotechnology 2018, 29, 325204. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotech. 2008, 3, 206–209. [Google Scholar] [CrossRef]
- Whelan, P.R.; Shen, Q.; Zhou, B.B.; Serrano, I.G.; Kamalakar, M.V.; Mackenzie, D.M.A.; Ji, J.; Huang, D.P.; Shi, H.F.; Luo, D. Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Mater. 2020, 7, 035009. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Su, Y.K.; Yan, M.; Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 2010, 18, 8367–8382. [Google Scholar] [CrossRef]
- Piper, J.R.; Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 2014, 1, 347–353. [Google Scholar] [CrossRef]
- Thareja, V.; Kang, J.H.; Yuan, H.T.; Milaninia, K.M.; Hwang, H.Y.; Cui, Y.; Kik, P.G.; Brongersma, M.L. Electrically tunable coherent optical absorption in graphene with ion gel. Nano Lett. 2015, 15, 1570–1576. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ouyang, Z.; Lin, M.; Zheng, Y. High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect. Nanomaterials 2021, 11, 2824. https://doi.org/10.3390/nano11112824
Wang Q, Ouyang Z, Lin M, Zheng Y. High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect. Nanomaterials. 2021; 11(11):2824. https://doi.org/10.3390/nano11112824
Chicago/Turabian StyleWang, Qiong, Zhengbiao Ouyang, Mi Lin, and Yaoxian Zheng. 2021. "High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect" Nanomaterials 11, no. 11: 2824. https://doi.org/10.3390/nano11112824
APA StyleWang, Q., Ouyang, Z., Lin, M., & Zheng, Y. (2021). High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect. Nanomaterials, 11(11), 2824. https://doi.org/10.3390/nano11112824