Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater
Abstract
:1. Introduction
2. Graphene-Based Materials for Removal of Heavy Metals
- GO and rGO and their foam/aerogel structures and
- Hybrid of GO or rGO with metallic, organic, inorganic, and polymeric materials
2.1. Graphene Oxide and Reduced Graphene Oxide
2.2. Graphene Composites for Adsorption Applications
2.2.1. Magnetic Nanocomposites and Nanocomposites with Other Metals
2.2.2. Hybrids with Chitosan and Cellulose
2.2.3. Graphene Hybrids with Polymers
3. Adsorption Measurements and Data Analysis
3.1. Adsorption Mechanism
3.2. Adsorption Kinetics and Isotherms
3.3. Effects of Adsorption Conditions
4. Removal of Heavy Metals Using Graphene Materials
4.1. Arsenic Removal
4.2. Lead Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Pb Ratio (g/g) | pH | Max. Pb Conc. (mg/L) | Capacity (mg/g) | Max. Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
NO | GO | - | 1.6 | - | 60 | 120 | 98 | - | [78] |
Surface-Modified G | 101 | 4 | 5 | 1000 | 196 | - | L | [79] | |
Inorganic | G-Fe | 201.3 | 1 | 6 | 100 | 645 | - | L | [80] |
TI/GO@Fe3O4 | 0.2 | 0.4 | 5 | 500 | 461 | - | L | [74] | |
SGO | - | - | - | - | 415 | - | L | [81] | |
ZIF-8@GO | 946.5 | - | 5 | 30 | 356 | 70 | L | [82] | |
GO-SOxR@TiO2 | 208 | - | - | - | 312 | - | L | [83] | |
Fe3S4/rGO | 80.9 | 7.5 | 6 | 500 | 285.7 | 80 | L | [84] | |
GO-SOxR | 102 | - | - | - | 285 | - | R-L | [83] | |
GO-SOxR@SiO2 | 92 | - | - | - | 172 | - | L | [83] | |
PG-C | 154.5 | - | 7 | 1 | 131.4 | 99.8 | L | [85] | |
rGO-NiFerrite NC | 167.26 | 40 | 5 | 10 | 121.9 | 99 | L | [30] | |
Mg−Al LDH/ pRGO | 79.4 | 0.2 | 4.5 | 100 | 116.2 | 100 | L | [26] | |
pRGO | 50.2 | - | 4.5 | - | 65.0 | 100 | L | [26] | |
CNF-C | 45.7 | - | 7 | 1.5 | 42.9 | 48 | L | [85] | |
GO-OMS-20 | 872.9 | 1 | - | 100 | 39.5 | 78.7 | L | [53] | |
Cu(tpa).GO | - | 0.29 | 7 | 35.1 | 37 | - | L | [86] | |
CdS-G / ZnS-G | - | 666.6 | 5.9 | 1.5 | 3.1 | 99 | L | [87] | |
Inorganic + Metal Oxide | GONF | 136 | 0.75 | 5.5 | 1000 | 10.8 | 93 | L | [88] |
MCF3DG | - | 0.064 | 8.5 | 26 | 957.3 | 100 | L | [62] | |
GO-W-MC | - | 0.03 | 7 | 300 | 253.2 | 89 | L | [65] | |
MGL | 74.9 | 1.81 | 5 | 550 | 63.3 | 97.5 | L | [66] | |
rGO-NiFerrite NC | 167.3 | 40 | 5 | 10 | 25.8 | >99 | L | [30] | |
Metal Oxide | HMO@GO | 383.9 | - | 5 | - | 553.6 | 100 | F | [41] |
MNGH | 156 | 0.08 | 5 | 250 | 356.4 | - | L | [58] | |
GNPs/Fe-Mg-Cu | 104.9 | 120 | 7 | - | 251.3 | 99 | F | [89] | |
GOMO | 623 | 5 | 6.5 | 80 | 190 | - | L | [59] | |
CoFe2O4-G | 126.36 | 8.3 | 5 | 30 | 142.8 | 100 | L | [60] | |
NiFe2O4-G | 57.11 | 8.3 | 5 | 30 | 111.1 | 100 | L | [60] | |
G−ZnO | - | 100 | 6 | 10 | 23.4 | 92 | L | [90] | |
Organic | L-Glu/GO | - | 0.6 | 5 | 2000 | 513.4 | - | L | [63] |
Chitosan/GO | - | 0.5 | 3 | 1000 | 461.3 | - | R–P | [38] | |
MWCNT-PDA/GO | 356.1 | 0.167 | 6 | 400 | 350.9 | - | L | [91] | |
PAamidoamine-g mGO | - | - | 6 | - | 326.7 | 92.6 | L | [70] | |
DTC-GO | - | 5 | 5.3 | 50 | 132.0 | - | L | [92] | |
IT-PRGO | - | 0.08 | 5 | 400 | 101.5 | 98 | L | [47] | |
GOMCS-IL | 357 | 5 | 5 | 200 | 85 | - | L | [33] | |
GO-TETA-DAC | 762 | - | 5 | 100 | 80.9 | 77 | L | [67] | |
Pb-MCGO | 392.5 | - | 5 | - | 79 | 90 | L | [93] | |
MCGO | 382.5 | - | 5 | - | 77 | - | L | [94] | |
Organic + Metal Oxide | EDTA-mGO | 49.9 | 0.5 | 4.1 | 100 | 268.4 | 95.5 | F/T | [76] |
GO/Fe3O4-g-G | - | - | 5 | - | 181.4 | - | L | [95] | |
rGO-PDTC/Fe3O4 | 194.8 | 0.25 | 6 | 100 | 147.1 | - | L | [68] | |
RGO/Fe3O4 | 58 | - | 5.5 | 30 | 48 | 96 | L | [61] | |
Polymer | g-C-EN-GO | - | 0.08 | 7 | 3127 | 186.5 | 55.1 | L | [96] |
GO+Zn@NH4Cl | - | 1 | - | 635 | 17900 | 99 | F | [97] | |
RGO/PAM | - | 0.6 | 6 | 1500 | 1000 | - | L | [64] | |
GOCA | - | - | 5 | 200 | 602 | L | [98] | ||
EDA-RGO | 28 | 0.5 | 7 | 200 | 413.2 | - | L | [99] | |
DTPA/MGO | - | 0.025 | 3 | 400 | 387.6 | - | L | [39] | |
MMSP-GO | - | 5 | 9 | 20 | 333 | - | L | [100] | |
PAS-GO | 53.7 | 0.025 | 4.9 | 400 | 312.5 | 100 | L | [101] | |
LS-GO-PANI | - | 0.4 | 5 | 1000 | 216.4 | 98.3 | L | [35] | |
GO Fe3O4- DETA | - | - | 5.5 | 0.11 | 172.4 | 100 | L | [102] |
4.3. Cadmium Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Cd Ratio (g/g) | pH | Max Cd Conc. (mg/L) | Capacity (mg/g) | Max Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
None | GO nanosheets | - | 5 | 6 | 100 | 167 | - | L | [115] |
Inorganic | NZVI/rGOs | 117.9 | - | 5 | - | 425.7 | 100 | L | [109] |
GO-SOxR@TiO2 | 208 | - | - | - | 384 | - | F | [83] | |
Surface modified G | 101 | 4 | 2–8 | 1000 | 199.9 | - | L | [79] | |
Cu(tpa).GO | - | 0.3 | 7 | 35.9 | 53 | - | L | [86] | |
GO-OMS-20 | 872.9 | 1 | - | 100 | 48 | 96.9 | L | [53] | |
nZVI/rGO | - | 12 | 6.5 | 50 | 46.5 | 82.4 | L | [116] | |
CdS-G/ZnS-G | - | 1000 | 5.9 | 1 | 3.6 | 97 | L | [87] | |
Metal Oxide | rGO/magnetite/Ag NHs | - | 1.8 | 4 | 112.4 | 386.8 | 100 | L | [22] |
GO-MO | 383.9 | 0.02 | 6 | 500 | 202 | 99 | F | [117] | |
aminoMGO | 189.9 | - | 7 | - | 184.7 | - | L | [118] | |
MMSP-GO | - | 5 | 9 | 20 | 167 | - | L | [100] | |
rGO-PDTC/Fe3O4 | 194.8 | 0.3 | 6 | 100 | 116.3 | - | L | [68] | |
CoFe2O4-G | 126.4 | 0.8 | 7 | 30 | 105.3 | 80 | L | [60] | |
mGO | 44.5 | 7 | 7 | - | 90.2 | - | L | [69] | |
NiFe2O4-G | 57.1 | 0.5 | 7 | 50 | 74.6 | 50 | L | [60] | |
GOFe3O4-DETA | - | - | 5.5 | 0.12 | 59.9 | 99.7 | L | [102] | |
GO | - | 0.01 | 6 | 1000 | 23.9 | - | F | [119] | |
DTPA/MGO | - | 0.03 | 3 | 300 | 286.5 | - | L | [39] | |
Organic | GO-f | - | 16.7 | 8.8 | 20 | 285.7 | 100 | L | [44] |
GO-DPA | - | 0.4 | 5 | 100 | 257.2 | 85 | L | [40] | |
PNGF | - | 0.3 | - | 100 | 254.9 | 70 | - | [120] | |
GOCA | - | - | 5 | 200 | 181 | - | L | [98] |
4.4. Nickel Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Ni Ratio (g/g) | pH | Max Ni Conc. (mg/L) | Capacity (mg/g) | Max Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
I | GO-SOxR@TiO2 | 208 | - | - | - | 344 | - | R–P | [91] |
O | GO-DPA | - | 0.4 | 5 | 100 | 180.9 | >85 | L | [40] |
O | GO+P. Cateniannulatus | 185.6 | 0.833 | 4 | 60 | 104.2 | 95 | L | [121] |
MO | Fe3O4/rGO | 109 | 3.91 | 5.5 | 51.1 | 76.3 | 100 | L | [123] |
- | GO | - | - | 4 | 25 | 35.6 | - | L | [124] |
MO | Fe3O4-GS | 62.4 | 2 | 7 | 5 | 22.1 | 86 | F | [77] |
4.5. Mercury Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Hg Ratio (g/g) | pH | Max Hg Conc. (mg/L) | Capacity (mg/g) | Max Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
Polymer | Magnetic PPy–GO | 1737.6 | 0.9 | 7 | 100 | 400 | 99 | L | [35] |
GOCA | - | 2 | 5 | 50 | 374 | 97 | L | [98] | |
Fe3O4-GS | 62.4 | 2 | 7 | 5 | 23.0 | 93 | F | [77] | |
Inorganic | Ag/graphene | 251 | 1 | 5 | 100 | 91.7 | 98.8 | F | [129] |
GO-OMS-20 | 872.9 | 1 | - | 100 | 49 | 98.5 | L | [53] | |
GO/Fe-Mn | 153.4 | 12 | 7 | 5 | 32.9 | 89 | S | [130] | |
Organic + Inorganic | GMA-1 | - | - | - | - | 719 | - | - | [135] |
Cellulose-GNC | 14.9 | 12 | 6 | 50 | 410 | 77 | F | [136] | |
GCS | 157 | - | 6 | 0.89 | 299.4 | 80 | F | [50] | |
SGO/Fe-Mn | - | 0.5 | 6 | 100 | 233.4 | 95.6 | BET | [132] | |
Organic | IT-PRGO | - | 0.4 | 5 | 900 | 624 | 96 | L | [47] |
GO/2-PTSC with US | - | 0.3 | 5 | 90 | 555 | >85 | L | [36] | |
EDTA-mGO | 49.9 | 1.2 | 4.1 | 100 | 508.4 | 94.9 | F /T | [76] | |
Phytic acid induced GO | - | - | 7.2 | - | 361 | 97 | L | [133] | |
SeCA-GH | - | 0.9 | 3 | 100 | 331 | 99 | L | [137] | |
GO-f | - | 16.6 | 8.3 | 20 | 227.3 | 100 | L | [44] | |
rGO-PDTC/Fe3O4 | 194.8 | 0.3 | 6 | - | 158.7 | - | L | [68] | |
HT-rGO-N | 386 | 0.2 | 5 | 11 | 63.8 | 98 | F | [138] |
4.6. Chromium Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Cr Ratio (g/g) | pH | Max Cr Conc. (mg/L) | Capacity (mg/g) | Max Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
Inorganic | rGO-NiFerrite NC | 167.3 | 40 | 4 | 10 | 126.6 | 99 | L | [142] |
G-Fe-Pb | 201.3 | 0.5 | 6 | 22 | 100 | 100 | L | [80] | |
PG-C | 154.5 | - | 6 | 0.5 | 68.9 | 100 | L | [85] | |
GO-OMS-20 | 872.9 | 1 | - | 100 | 45.5 | 96 | L | [53] | |
GONF | 136 | 0.5 | 5.5 | 1000 | 9.3 | 99.6 | L | [88] | |
Metal Oxide | GOF/Fe3O4 | 574.2 | 2.5 | 2 | 200 | 258.6 | 99.97 | F | [143] |
G−ZnO | - | 100 | 6 | 10 | 46.3 | 90 | L | [90] | |
NPG/Fe3O4 | 850 | 0.9 | 3 | 1000 | 43.5 | 80 | F | [144] | |
HR-M-GO/Fe3O4 | 182 | 1.6 | 7 | 300 | 31.8 | 100 | L | [145] | |
MGC | 97 | 0.03 | 6.6 | 60 | 5.5 | - | L | [146] | |
Metal Oxide + Organic | f-Fe3O4/G | 60 | 0.07 | 3–4 | 600 | 280.6 | - | L | [147] |
GCF | 74.4 | 10 | 2 | 50 | 270.3 | 96 | L | [72] | |
CoFe2O4 -TETA-GO | - | 4.4 | 2 | 100 | 180.1 | - | L | [148] | |
MCGO-IL | - | 5 | 3 | 200 | 145.4 | - | L | [149] | |
Organic | DAP–RGO | 46.7 | 2 | 1 | 500 | 393.7 | 96 | F | [150] |
Chitosan/GO | - | 0.5 | 6 | 1000 | 310.4 | >90 | R–P | [38] | |
Cs/CDTA-GO | - | - | 3.5 | 25 | 167.0 | 90 | L | [31] | |
GEC | - | 8 | 2 | 50 | 86.2 | 92.5 | F | [141] | |
GOSB | - | 0.03 | 3 | 100 | 76.9 | - | L | [151] | |
GAD | 37.6 | 0.001 | 4 | 200 | 72.7 | - | L | [152] | |
IT-PRGO | - | 4 | 5 | 250 | 63 | 96 | L | [47] | |
MGNC | 42.1 | 3000 | 2 | 1 | 1.0 | 100 | - | [153] | |
Polymer | G-PDAP | 327.8 | 4 | 1 | 500 | 609.8 | 100 | L | [37] |
PmPD/rGO/NFO | - | 0.4 | 3 | - | 502.5 | - | L | [154] | |
GO-PEI | 1.2 | - | - | - | 436.2 | - | L | [155] | |
P(TA-TEPA)-PAM-RGO | - | - | 6 | - | 387.5 | - | L | [156] | |
Fe3O4-GS | 62.4 | 2.6 | 7.5 | 3 | 17.3 | 95 | F | [77] | |
Fe3O4/SiO2-GO-PEI | - | 1 | 6 | 4 | 0.3 | - | L | [140] |
4.7. Copper Removal
Modification | Adsorbent | Surface Area (m2/g) | G/Cu Ratio (g/g) | pH | Max Cu Conc. (mg/L) | Capacity (mg/g) | Max. Removal (%) | Adsorption Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
Inorganic | GO –COOH | 39.8 | 0.159 | 6–7 | 700 | 357.1 | 99.4 | L | [161] |
BY-GO | 34.2 | 0.674 | 5 | 493.3 | 349.5 | - | L | [162] | |
Cu(tpa).GO | - | 0.04 | 7 | 228.1 | 235 | - | L | [86] | |
Graphene balls | - | - | 3.5 | 249.7 | 224.6 | 99 | F | [163] | |
ZnO NR-rGO | - | 5 | 8 | 98.6 | 67.4 | 100 | L | [164] | |
Metal Oxide | GO-MO | 383.9 | 0.02 | 6 | 500 | 240 | 99 | F | [117] |
FTG | 422.8 | - | - | - | 87.4 | 72.1 | L | [165] | |
SMGO | 92.8 | 8.35 | 4.7 | 73.7 | 62.7 | - | L | [166] | |
G−ZnO | - | 100 | 6 | 10 | 37.5 | 96.56 | L | [90] | |
Organic | GCAM10 | - | 0.4 | 4.9 | 500 | 457.5 | >85 | F | [167] |
Chitosan/GO | - | 0.5 | 6 | 1000 | 423.8 | >90 | R–P | [38] | |
GO-DPA | - | 0.4 | 5 | 100 | 358.8 | >85 | L | [40] | |
β-CD/GPTMS/GO | - | 1.25 | 7 | 200 | 352.7 | - | L | [168] | |
MWCNT-PDA | 356.1 | 0.167 | 6 | 400 | 318.5 | - | L | [91] | |
SA/PVA/GO | - | - | 8 | - | 247.7 | >80 | L | [159] | |
EDTA-MCS/GO | 49.9 | 6.6 | 7 | 50 | 207.3 | 86.8 | L | [46] | |
CS/GO10 | - | 0.1 | 5 | 100 | 202.5 | - | F | [32] | |
GAD | 37.6 | 0.01 | 4 | 200 | 169.5 | - | L | [152] | |
GO-CTPy | 57.3 | 16.7 | 6 | 90 | 119.6 | - | L | [157] | |
GOSB | - | 0.3 | 3 | 100 | 111.11 | - | L | [151] | |
GO-TETA-DAC | 445 | - | 5 | - | 65.1 | 77 | L | [67] | |
IT-PRGO | - | 4 | 5 | 150 | 37 | 100 | L | [47] | |
Organic + Metal Oxide | amino-MGO | - | - | 5.5 | - | 578.1 | - | L | [118] |
EDTA-mGO | 49.9 | 1 | 4.1 | 100 | 301.2 | 95.7 | T | [76] | |
FA-mGO | - | 2 | 5 | 2000 | 283.3 | 96.8 | T | [134] | |
Fe3O4@GO | 169.7 | 0.05 | 5 | 1000 | 32.5 | - | F | [169] | |
O+P | rGO-PDTC/Fe3O4 | 194.8 | 0.33 | 5 | - | 113.6 | - | L | [68] |
g-C-EN-GO | 0.26 | 7 | 959.2 | 46.4 | 43.1 | L | [96] | ||
Polymer | mGO/PAMAM2.0 | - | - | 7 | 30 | 353.6 | 99.9 | F | [70] |
DTPA/MGO | - | 0.033 | 3 | 300 | 131.4 | - | L | [39] | |
EDA-RGO | 28 | 0.5 | 7 | 200 | 55.3 | - | L | [99] | |
MGO/β-CD | - | 1.4 | 5.5 | 100 | 30.98 | - | F | [170] | |
P + MO | GO/ Fe3O4/PEI | 323.5 | 1 | 5 | 1000 | 157 | 97.1 | L | [171] |
MCGON | 132.9 | 0.167 | 7 | 100 | 217.4 | - | L | [172] | |
CS/GO/Fe3O4-IIP | - | 0.6 | 6 | 500 | 132 | - | F | [46] |
4.8. Other Metals
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Guidelines Approved by the Guidelines Review Committee. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ying, X.; Fang, Z. Experimental research on heavy metal wastewater treatment with dipropyl dithiophosphate. J. Hazard. Mater. 2006, 137, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Kusumastuti, A.; Derek, C.J.C.; Ooi, B.S. Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization. Chem. Eng. J. 2011, 171, 870–882. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Kyzas, G.Z.; Matis, K.A. Various flotation techniques for metal ions removal. J. Mol. Liq. 2017, 225, 260–264. [Google Scholar] [CrossRef]
- Shafaei, A.; Rezayee, M.; Arami, M.; Nikazar, M. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination 2010, 260, 23–28. [Google Scholar] [CrossRef]
- McKay, G. Use of Adsorbents for the Removal of Pollutants from Wastewater; CRC Press: Boca Raton, FL, USA, 1995; p. 208. [Google Scholar]
- Abbas, M.; Kaddour, S.; Trari, M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 2014, 20, 745–751. [Google Scholar] [CrossRef]
- Largitte, L.; Brudey, T.; Tant, T.; Dumesnil, P.C.; Lodewyckx, P. Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater. 2016, 219, 265–275. [Google Scholar] [CrossRef]
- Abbas, I.A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq. 2016, 214, 175–191. [Google Scholar] [CrossRef]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef] [PubMed]
- Perreault, F.; De Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, M.J.; May, S.; Mebberson, N.; Pendleton, P.; Vasilev, K.; Plush, S.E.; Hayball, J.D. Activated carbon, carbon nanotubes and graphene: Materials and composites for advanced water purification. C J. Carbon Res. 2017, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- BC, B. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.-W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Jimenez-Cervantes, E.; Amieva, J.L.B.; Martínez-Hernández, A.L.; Velasco-Santos, C. Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules. In Recent Advances in Graphene Research; Nayak, P.K., Ed.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Alazmi, A.; Rasul, S.; Patole, S.P.; Costa, P.M.F.J. Comparative Study of Synthesis and Reduction Methods for Graphene Oxide. Polyhedron 2016, 116, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Park, C.M.; Wang, D.; Jonghun, H.; Heo, J.; Su, C. Evaluation of the Colloidal Stability and Adsorption Performance of Reduced Graphene Oxide–Elemental Silver/Magnetite Nanohybrids for Selected Toxic Heavy Metals in Aqueous Solutions. Appl. Surf. Sci. 2018, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Khatamian, M.; Khodakarampoor, N.; Saket-Oskoui, M. Efficient removal of arsenic using graphene-zeolite based composites. J. Colloid Interface Sci. 2017, 498, 433–441. [Google Scholar] [CrossRef]
- Choong, C.; Lee, G.; Jang, M.; Park, C.; Ibrahim, S. One Step Hydrothermal Synthesis of Magnesium Silicate Impregnated Palm Shell Waste Activated Carbon for Copper Ion Removal. Metals 2018, 8, 741. [Google Scholar] [CrossRef] [Green Version]
- Lujanienė, G.; Šemčuk, S.; Lečinskytė, A.; Kulakauskaitė, I.; Mažeika, K.; Valiulis, D.; Pakštas, V.; Skapas, M.; Tumėnas, S. Magnetic graphene oxide based nano-composites for removal of radionuclides and metals from contaminated solutions. J. Environ. Radioact. 2017, 166, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Varadwaj, G.B.B.; Oyetade, O.A.; Rana, S.; Martincigh, B.S.; Jonnalagadda, S.B.; Nyamori, V.O. Facile Synthesis of Three-Dimensional Mg-Al Layered Double Hydroxide/Partially Reduced Graphene Oxide Nanocomposites for the Effective Removal of Pb2+ from Aqueous Solution. ACS Appl. Mater. Interfaces 2017, 9, 17291–17306. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, Q.; Qu, H.; Zhang, X.; Guo, J.; Zhu, J.; Zhao, G.; Colorado, H.A.; Yu, J.; Sun, L. Magnetic graphene oxide nanocomposites: Nanoparticles growth mechanism and property analysis. J. Mater. Chem. C 2014, 2, 9478–9488. [Google Scholar] [CrossRef]
- Shen, J.; Shi, M.; Ma, H.; Yan, B.; Li, N.; Ye, M. Hydrothermal synthesis of magnetic reduced graphene oxide sheets. Mater. Research Bulletin 2011, 46, 2077–2083. [Google Scholar] [CrossRef]
- Wen, T.; Wu, X.; Liu, M.; Xing, Z.; Wang, X.; Xu, A.-W. Efficient Capture of Strontium from Aqueous Solutions Using Graphene Oxide–Hydroxyapatite Nanocomposites. Dalton Trans. 2014, 43, 7464–7472. [Google Scholar] [CrossRef]
- Lingamdinne, L.; Kim, I.; Ha, J.; Chang, Y.; Koduru, J.; Yang, J. Enhanced Adsorption Removal of Pb (II) and Cr (III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals 2017, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.E.A. Synthesis and Adsorption Properties of Chitosan-CDTA-GO Nanocomposite for Removal of Hexavalent Chromium from Aqueous Solutions, Arabian Journal of Chemistry. Arab. J. Chem. 2018, 11, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, W.; Zhou, H.; Huang, Z.; Ye, T.; Liu, R.; Kuang, Y. Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu (II) removal. J. Cent. South Univ. 2014, 21, 2826–2831. [Google Scholar] [CrossRef]
- Sun, W.; Li, L.; Luo, C.; Fan, L. Synthesis of magnetic graphene nanocomposites decorated with ionic liquids for fast lead ion removal. Int. J. Biol. Macromol. 2016, 85, 246–251. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, H.; Wang, Q.; Wang, J.; Cheng, J.; Guo, Y.; Zhou, X.; Bai, R. Adsorption of mercury (II) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Adv. 2017, 7, 18466–18479. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wu, J.-X.; Lü, Q.-F.; Lin, T.-T. Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb (II) ions. ACS Sustain. Chem. Eng. 2014, 2, 1203–1211. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Ferdowsi, S.; Zare-Dorabei, R.; Barzin, A. Highly efficient ultrasonic-assisted removal of Hg (II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies. Ultrason. Sonochem. 2016, 33, 118–128. [Google Scholar] [CrossRef]
- Dinda, D.; Saha, S. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr (VI). J. Hazard. Mater. 2015, 291, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Najafabadi, H.; Irani, M.; Rad, L.; Haratameh, A.; Haririan, I. Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv. 2015, 5, 16532–16539. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Liu, Y.; Jiang, L.; Song, B.; Li, M.; Zeng, G.; Tan, X.; Cai, X.; Ding, Y. Adsorption of Cu (II), Pb (II), and Cd (II) Ions from Acidic Aqueous Solutions by Diethylenetriaminepentaacetic Acid-Modified Magnetic Graphene Oxide. J. Chem. Eng. Data 2017, 62, 407–416. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Ferdowsi, S.; Barzin, A.; Tadjarodi, A. Highly efficient simultaneous ultrasonic-assisted adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2 ‘-dipyridylamine: Central composite design optimization. Ultrason. Sonochem. 2016, 32, 265–276. [Google Scholar] [CrossRef]
- Wan, S.; He, F.; Wu, J.; Wan, W.; Gu, Y.; Gao, B. Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J. Hazard. Mater. 2016, 314, 32–40. [Google Scholar] [CrossRef]
- Fu, W.; Wang, X.; Huang, Z. Remarkable reusability of magnetic Fe3O4-encapsulated C3N3S3 polymer/reduced graphene oxide composite: A highly effective adsorbent for Pb and Hg ions. Sci. Total Environ. 2019, 659, 895–904. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Maitra, U.; Matte, H.S.S.R. Synthesis, Characterization, and Selected Properties of Graphene. In Graphene; Sood, C.N.R.R.A.A.K., Ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 1–47. [Google Scholar] [CrossRef]
- Alimohammady, M.; Jahangiri, M.; Kiani, F.; Tahermansouri, H. Highly efficient simultaneous adsorption of Cd (II), Hg (II) and As (III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: Central composite design optimization. New J. Chem. 2017, 41, 8905–8919. [Google Scholar] [CrossRef]
- Verduzco, J.; Oliva, A.I.; Oliva, E.; Macias, C.R.; Garcia, M.; Herrera-Trejo, N.; Pariona, A.I. Enhanced Removal of Arsenic and Chromium Contaminants from Drinking Water by Electrodeposition Technique Using Graphene Composites. Mater. Chem. Phys. 2019, 229, 197–209. [Google Scholar] [CrossRef]
- Shahzad, A.; Miran, W.; Rasool, K.; Nawaz, M.; Jang, J.; Lim, S.; Lee, D. Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv. 2017, 7, 9764–9771. [Google Scholar] [CrossRef] [Green Version]
- Awad, F.S.; AbouZeid, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; El Shall, M.S. Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Mercury (II) by 2-lmino-4-thiobiuret-Partially Reduced Graphene Oxide (IT-PRGO). ACS Appl. Mater. Interfaces 2017, 9, 34230–34242. [Google Scholar] [CrossRef] [PubMed]
- La, D.; Nguyen, T.; Jones, L.; Bhosale, S. Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media. Sensors 2017, 17, 1292. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Ye, Z.; Hmidi, N. High-performance iron oxide-graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 522, 161–172. [Google Scholar] [CrossRef]
- Dubey, S.; Nguyen, T.; Kwon, Y.; Lee, C. Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J. Ind. Eng. Chem. 2015, 29, 282–288. [Google Scholar] [CrossRef]
- Yoon, Y.; Zheng, M.; Ahn, Y.; Park, W.; Yang, W.; Kang, J. Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep. Purif. Technol. 2017, 178, 40–48. [Google Scholar] [CrossRef]
- Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. One-Pot Synthesis of Water-Swellable Mg-Al Layered Double Hydroxides and Graphene Oxide Nanocomposites for Efficient Removal of As (V) from Aqueous Solutions. ACS Appl. Mater. Interfaces 2013, 5, 3304–3311. [Google Scholar] [CrossRef]
- Wang, X.; Pei, Y.; Lu, M.; Lu, X.; Du, X. Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J. Mater. Sci. 2015, 50, 2113–2121. [Google Scholar] [CrossRef]
- Sreeram, A.; Hadi, P.; Hui, D.; Al Ansari, T.; McKay, G. Optimisation of the removal of arsenate from water using nanochitosan. Desalin. Water Treat. 2017, 70, 235–243. [Google Scholar] [CrossRef]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of Arsenic (III) and Arsenic (V) from Aqueous Medium Using Chitosan-Coated Biosorbent. Water Res. 2008, 42, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tong, S.; Ge, M.; Wu, L.; Zuo, J.; Cao, C.; Song, W. Synthesis and Characterization of Multi-Amino-Functionalized Cellulose for Arsenic Adsorption. Carbohydr. Polym. 2013, 92, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Kamsonlian, S.; Suresh, S.; Ramanaiah, V.; Majumder, C.B.; Chand, S.; Kumar, A. Biosorptive Behavior of Mango Leaf Powder and Rice Husk for Arsenic (III) From Aqueous Solutions. Int. J. Environ. Sci. Technol. 2012, 9, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Yu, Y.; Li, Z.; Zuo, J.; Kuai, Z.; Jin, Y.; Wang, Y.; Wu, A.; Peng, C. 3D MnO2 Nanotubes@Reduced Graphene Oxide Hydrogel as Reusable Adsorbent for the Removal of Heavy Metal Ions. Mater. Chem. Phys. 2019, 231, 105–108. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, V.; Singh, D.K.; Hasan, S.H. Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: Isotherm, kinetic and thermodynamic modeling of adsorption. J. Environ. Chem. Eng. 2017, 5, 2259–2273. [Google Scholar] [CrossRef]
- Santhosh, C.; Kollu, P.; Felix, S.; Velmurugan, V.; Jeong, S.; Grace, A. CoFe2O4 and NiFe2O4@graphene adsorbents for heavy metal ions - kinetic and thermodynamic analysis. RSC Adv. 2015, 5, 28965–28972. [Google Scholar] [CrossRef]
- Prasad, C.; Murthy, P.K.; Krishna, R.H.; Rao, R.S.; Suneetha, V.; Venkateswarlu, P. Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb (II) from aqueous solution. J. Environ. Chem. Eng. 2017, 5, 4374–4380. [Google Scholar] [CrossRef]
- Nasiri, N.; Arsalani, Y.; Pirveysian, M. One-Pot Synthesis of Novel Magnetic Three-Dimensional Graphene/Chitosan/Nickel Ferrite Nanocomposite for Lead Ions Removal from Aqueous Solution: RSM Modelling Design. J. Clean. Prod. 2018, 201, 507–515. [Google Scholar] [CrossRef]
- Ge, H.; Zou, W. Preparation and characterization of L-glutamic acid-functionalized graphene oxide for adsorption of Pb (II). J. Dispers. Sci. Technol. 2017, 38, 241–247. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of Reduced Graphene Oxide/Poly (acrylamide) Nanocomposite and Its Adsorption of Pb (II) and Methylene Blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef]
- Hu, Z.; Qin, S.; Huang, Z.; Zhu, Y.; Xi, L.; Li, Z. Stepwise synthesis of graphene oxide-wrapped magnetic composite and its application for the removal of Pb (II). Arab. J. Sci. Eng. 2017, 42, 4239–4247. [Google Scholar] [CrossRef]
- Zhang, F.; Song, Y.; Song, S.; Zhang, R.; Hou, W. Synthesis of Magnetite-Graphene Oxide-Layered Double Hydroxide Composites and Applications for the Removal of Pb (II) and 2, 4-Dichlorophenoxyacetic Acid from Aqueous Solutions. ACS Appl. Mater. Interfaces 2015, 7, 7251–7263. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Wang, Z.; Liu, Y.; Yang, G.; Chen, J. Preparation of Dialdehyde Cellulose Grafted Graphene Oxide Composite and Its Adsorption Behavior for Heavy Metals from Aqueous Solution. Carbohydr. Polym. 2019, 212, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Huang, Z. Magnetic Dithiocarbamate Functionalized Reduced Graphene Oxide for the Removal of Cu (II), Cd (II), Pb (II), And Hg (II) Ions from Aqueous Solution: Synthesis, Adsorption, and Regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ghasemabadi, M.; Baghdadi, E.; Safari, F. Investigation of Continuous Adsorption of Pb (II), As (III), Cd (II), and Cr (VI) using a Mixture of Magnetic Graphite Oxide and Sand as a Medium in a Fixed-Bed Column. J. Environ. Chem. Eng. 2018, 6, 4840–4849. [Google Scholar] [CrossRef]
- Peer, N.; Bahramifar, H. Removal of Cd (II), Pb (II) and Cu (II) Ions from Aqueous Solution by Polyamidoamine Dendrimer Grafted Magnetic Graphene Oxide Nanosheets. J. Taiwan Inst. Chem. Eng. 2018, 87, 225–240. [Google Scholar] [CrossRef]
- Albert, E.; Abdullah, C.; Shiroshaki, Y. Synthesis and Characterization of Graphene Oxide Functionalized With Magnetic Nanoparticle via Simple Emulsion Method. Results Phys. 2018, 11, 944–950. [Google Scholar] [CrossRef]
- Samuel, M.S.; Shah, S.S.; Bhattacharya, J.; Subramaniam, K.; Pradeep Singh, N.D. Adsorption of Pb (II) from Aqueous Solution Using a Magnetic Chitosan/Graphene Oxide Composite and Its Toxicity Studies. Int. J. Biol. Macromol. 2018, 115, 1142–1150. [Google Scholar] [CrossRef]
- Cai, Y.; Jiang, Y.; Feng, L.; Hua, Y.; Liu, H.; Fan, C.; Yin, M.; Li, S.; Lv, X.; Wang, H. Q-Graphene-Scaffolded Covalent Organic Frameworks as Fluorescent Probes and Sorbents for the Fluorimetry and Removal of Copper Ions. Anal. Chim. Acta 2019, 1057, 88–97. [Google Scholar] [CrossRef]
- Cao, X.; Wen, J.; Wang, F.; Yang, H.; Zhong, S.; Wang, Z.; Surfaces, A. In situ Nano-Fe3O4/Triisopropanolamine Functionalized Graphene Oxide Composites to Enhance Pb2+ Ions Removal. Colloids Physicochem. Eng. Asp. 2019, 561, 209–217. [Google Scholar] [CrossRef]
- Vafajoo, R.; Cheraghi, R.; Dabbagh, G. Removal of Cobalt (II) Ions from Aqueous Solutions Utilizing the Pre-Treated 2-Hypnea Valentiae Algae: Equilibrium, Thermodynamic, and Dynamic Studies. Chem. Eng. J. 2018, 331, 39–47. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. [Google Scholar] [CrossRef]
- Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Raghubanshi, H.; Ngobeni, S.; Osikoya, A.; Shooto, N.; Dikio, C.; Naidoo, E.; Dikio, E.; Pandey, R.; Prakash, R. Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution. J. Ind. Eng. Chem. 2017, 47, 169–178. [Google Scholar] [CrossRef]
- Hemidouche, S.; Boudriche, L.; Boudjemaa, A.; Hamoudi, S. Removal of Lead (II) and Cadmium (II) Cations from Water Using Surface-Modified Graphene. Can. J. Chem. Eng. 2017, 95, 508–515. [Google Scholar] [CrossRef]
- Mahto, A.; Kumar, A.; Bhatt, M.; Chaudhary, J.; Sharma, A.; Paul, P.; Sanna Kotrappanavar, N.; Meena, R. Solvent-free production of nano-FeS anchored Graphene from Ulva fasciata: A Scalable synthesis of super-adsorbent for lead, chromium and dyes. J. Hazard. Mater. 2018, 353. [Google Scholar] [CrossRef]
- Wei, M.-P.; Chai, H.; Cao, Y.-L.; Jia, D.-Z. Sulfonated Graphene Oxide as an Adsorbent for Removal of Pb+2 and Methylene Blue. J. Colloid Interface Sci. 2018, 524, 297–305. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Lv, Z.; Xie, Y.; Shu, J.; Alsaedi, A.; Hayat, T.; Chen, C. Exploration of the Adsorption Performance and Mechanism of Zeolitic Imidazolate Framework-8@Graphene Oxide for Pb (II) and 1-Naphthylamine from Aqueous Solution. J. Colloid Interface Sci. 2019, 542, 410–420. [Google Scholar] [CrossRef]
- Pirveysian, M.; Ghiaci, M. Synthesis and Characterization of Sulfur Functionalized Graphene Oxide Nanosheets as Efficient Sorbent For Removal of Pb2+, Cd2+, Ni2+ and Zn2+ Ions from Aqueous Solution: A Combined Thermodynamic and Kinetic Studies. Appl. Surf. Sci. 2018, 428, 98–109. [Google Scholar] [CrossRef]
- Kong, L.; Li, Z.C.; Huang, X.Q.; Huang, S.Q.; Sun, H.; Liu, M.; Li, L. Efficient removal of Pb (II) from water using magnetic Fe3S4/reduced graphene oxide composites. J. Mater. Chem. A 2017, 5, 19333–19342. [Google Scholar] [CrossRef]
- Santhosh, C.; Nivetha, R.; Kollu, P.; Srivastava, V.; Sillanpää, M.; Grace, A.N.; Bhatnagar, A. Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, E.; Mohaghegh, N. New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: Synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage. Environ. Sci. Pollut. Res. 2017, 24, 22353–22360. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.; Srivastava, S.; Raul, P.; Gupta, A.; Shrivastava, R. Graphene nanocomposites of CdS and ZnS in effective water purification. J. Nanopart. Res. 2014, 16. [Google Scholar] [CrossRef]
- Lingamdinne, L.; Koduru, J.; Choi, Y.; Chang, Y.; Yang, J. Studies on removal of Pb (II) and Cr (III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 2016, 165, 64–72. [Google Scholar] [CrossRef]
- La, D.D.; Thi, H.P.N.; Nguyen, T.A.; Bhosale, S.V. Effective removal of Pb (II) using a graphene@ternary oxides composite as an adsorbent in aqueous media. New J. Chem. 2017, 41, 14627–14634. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, B.; Ye, J.; Jia, Q. Preparation, Characterization, and Application of Graphene-Zinc Oxide Composites (G-ZnO) for the Adsorption of Cu (II), Pb (II), and Cr (III). J. Chem. Eng. Data 2013, 58, 2395–2401. [Google Scholar] [CrossRef]
- Zhan, W.; Gao, L.; Fu, X.; Siyal, S.H.; Sui, G.; Yang, X. Green Synthesis of Amino-Functionalized Carbon Nanotube-Graphene Hybrid Aerogels for High Performance Heavy Metal Ions Removal. Appl. Surf. Sci. 2019, 467, 1122–1133. [Google Scholar] [CrossRef]
- Gao, T.; Yu, J.; Zhou, Y.; Jiang, X. The synthesis of graphene oxide functionalized with dithiocarbamate group and its prominent performance on adsorption of lead ions. J. Taiwan Inst. Chem. Eng. 2017, 71, 426–432. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Luo, C.; Wang, X.; Duan, H. Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int. J. Biol. Macromol. 2016, 86, 505–511. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Sun, M.; Li, X.; Qiu, H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B Biointerfaces 2013, 103, 523–529. [Google Scholar] [CrossRef]
- Ma, Y.X.; Kou, Y.L.; Xing, D.; Jin, P.S.; Shao, W.J.; Li, X.; Du, X.Y.; La, P.Q. Synthesis of magnetic graphene oxide grafted polymaleicamide dendrimer nanohybrids for adsorption of Pb (II) in aqueous solution. J. Hazard. Mater. 2017, 340, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Yakout, A.A.; El-Sokkary, R.H.; Shreadah, M.A.; Hamid, O.G.A. Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption. Carbohydr. Polym. 2017, 172, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Ji, L.; Li, C.; Hu, C.; Wu, K. Rapid, Efficient and Economic Removal of Organic Dyes and Heavy Metals from Wastewater by Zinc-Induced In-Situ Reduction and Precipitation of Graphene Oxide. J. Taiwan Inst. Chem. Eng. 2018, 88, 137–145. [Google Scholar] [CrossRef]
- Arshad, M.; Selvaraj, J.; Zain, F.; Banat, M.A. Polyethylenimine Modified Graphene Oxide Hydrogel Composite as an Efficient Adsorbent for Heavy Metal Ions, Separation and Purification Technology. Sep. Purif. Technol. 2019, 209, 870–880. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, F.; He, S.; Huang, F.; Peng, Z. Adsorption Behaviour of Reduced Graphene Oxide for Removal of Heavy Metal Ions. Asian J. Chem. 2014, 26, 4901–4906. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Chen, B.; Guo, F.; Yu, S.; Tang, Y. Synergistic Removal of Pb (II), Cd (II) and Humic Acid by Fe3O4@Mesoporous Silica-Graphene Oxide Composites. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater. J. Hazard. Mater. 2014, 274, 145–155. [Google Scholar] [CrossRef]
- Aliyari, E.; Alvand, M.; Shemirani, F. Simultaneous separation and preconcentration of lead and cadmium from water and vegetable samples using a diethylenetriamine-modified magnetic graphene oxide nanocomposite. Anal. Methods 2015, 7, 7582–7589. [Google Scholar] [CrossRef]
- Song, X.; Liu, H.; Cheng, L.; Qu, Y. Surface Modification of Coconut-Based Activated Carbon by Liquid-Phase Oxidation and Its Effects on Lead Ion Adsorption. Desalination 2010, 255, 78–83. [Google Scholar] [CrossRef]
- Lalhruaitluanga, H.; Jayaram, K.; Prasad, M.; Kumar, K. Lead (II) Adsorption from Aqueous Solutions by Raw and Activated Charcoals of Melocanna Baccifera Roxburgh (Bamboo)—A Comparative Study. J. Hazard. Mater. 2010, 175, 311–318. [Google Scholar] [CrossRef]
- Ng, J.; Cheung, W.; McKay, G. Equilibrium Studies for the Sorption of Lead from Effluents Using Chitosan. Chemosphere 2003, 52, 1021–1030. [Google Scholar] [CrossRef]
- Ho, Y.-S.; McKay, G. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Hadi, P.; Barford, J.; McKay, G. Selective Toxic Metal Uptake Using an E-Waste-Based Novel Sorbent–Single, Binary and Ternary Systems. J. Environ. Chem. Eng. 2014, 2, 332–339. [Google Scholar] [CrossRef]
- Bouabidi, Z.B.; El-Naas, M.H.; Cortes, D.; McKay, G. Steel-Making Dust as a Potential Adsorbent for the Removal of Lead (II) from an Aqueous Solution. Chem. Eng. J. 2018, 334, 837–844. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Zhu, K.; Wang, X. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd (II) removal. J. Taiwan Inst. Chem. Eng. 2016, 59, 389–394. [Google Scholar] [CrossRef]
- Demirbas, A.; Pehlivan, E.; Gode, F.; Altun, T.; Arslan, G. Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd (II) From Aqueous Solution on Amberlite IR-120 Synthetic Resin. J. Colloid Interface Sci. 2005, 282, 20–25. [Google Scholar] [CrossRef]
- Karnitz, O., Jr.; Gurgel, L.V.A.; De Melo, J.C.P.; Botaro, V.R.; Melo, T.M.S.; De Freitas Gil, R.P.; Gil, L.F. Adsorption of Heavy Metal Ion from Aqueous Single Metal Solution by Chemically Modified Sugarcane Bagasse. Bioresour. Technol. 2007, 98, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Corami, A.; Mignardi, S.; Ferrini, V. Cadmium Removal from Single-And Multi-Metal (Cd+ Pb+ Zn+ Cu) Solutions by Sorption on Hydroxyapatite. J. Colloid Interface Sci. 2008, 317, 402–408. [Google Scholar] [CrossRef]
- Yang, G.; Tang, L.; Lei, X.; Zeng, G.; Cai, Y.; Wei, X.; Zhou, Y.; Li, S.; Fang, Y.; Zhang, Y. Cd (II) Removal from Aqueous Solution by Adsorption on α-Ketoglutaric Acid-Modified Magnetic Chitosan. Appl. Surf. Sci. 2014, 292, 710–716. [Google Scholar] [CrossRef]
- Xu, M.; Hadi, P.; Ning, C.; Barford, J.; An, K.J.; McKay, G. Aluminosilicate-Based Adsorbent in Equimolar and Non-Equimolar Binary-Component Heavy Metal Removal Systems. Water Sci. Technol. 2015, 72, 2166–2178. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Li, T.; Hu, J.; Cao, R.; Wei, X.; Shi, X.; Ruan, W. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites. Materials 2017, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Shunli, W.; Ding, W.; Wang, Y.; Wu, J.; Gu, Y.; He, F. Manganese Oxide Nanoparticles Impregnated Graphene Oxide Aggregates for Cadmium and Copper Remediation. Chem. Eng. J. 2018, 350. [Google Scholar] [CrossRef]
- Dai, J.Y.; Zhao, H.Y.; Ye, Y.T.; Wang, L.; Cao, S.Y.; Su, X.J.; Hu, X.F.; Li, L. Improving the selectivity of magnetic graphene oxide through amino modification. Water Sci. Technol. 2017, 76, 2959–2967. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Bian, Z.; Zhang, J.; Ding, A.; Liu, S.; Wang, H. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl. Surf. Sci. 2015, 329, 269–275. [Google Scholar] [CrossRef]
- Chen, Y.; Song, X.; Zhao, T.; Xiao, Y.; Wang, Y.; Chen, X. A Phosphorylethanolamine-Functionalized Super-Hydrophilic 3D Graphene-Based Foam Filter for Water Purification. J. Hazard. Mater. 2018, 343, 298–303. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Fang, L. Effect of Paecilomyces cateniannulatus on the adsorption of nickel onto graphene oxide. Korean J. Chem. Eng. 2015, 32, 2449–2455. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Synthesis and characterization of chemically modified graphenes. Curr. Opin. Colloid Interface Sci. 2015, 20, 322–328. [Google Scholar] [CrossRef]
- Hoan, N.; Thu, N.; Van Duc, H.; Cuong, N.; Khieu, D.; Vo, V. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. J. Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Konicki, W.; Aleksandrzak, M.; Mijowska, E. Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide. Pol. J. Chem. Technol. 2017, 19, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Gardea-Torresdey, J.; Tiemann, K.; Gonzalez, J.; Cano-Aguilera, I.; Henning, J.; Townsend, M. Removal of Nickel Ions from Aqueous Solution by Biomass and Silica-Immobilized Biomass of Medicago Sativa (Alfalfa). J. Hazard. Mater. 1996, 49, 205–216. [Google Scholar] [CrossRef]
- Eser, A.; Tirtom, V.N.; Aydemir, T.; Becerik, S.; Dinçer, A. Removal of Nickel (II) Ions by Histidine Modified Chitosan Beads. Chem. Eng. J. 2012, 210, 590–596. [Google Scholar] [CrossRef]
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of Nickel from Protonated Rice Bran. J. Hazard. Mater. 2007, 143, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and Characterization of Slow Pyrolysis Pine Cone Bio-Char in the Removal of Organic and Inorganic Pollutants from Aqueous Solution by Adsorption: Kinetic, Equilibrium, Mechanism and Thermodynamic. Bioresour. Technol. 2017, 246, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Fang, L.; Chen, D.; Xu, H.; Yan, N. Effective and regenerable Ag/graphene adsorbent for Hg (II) removal from aqueous solution. Fuel 2017, 203, 128–134. [Google Scholar] [CrossRef]
- Tang, J.; Huang, Y.; Gong, Y.; Lyu, H.; Wang, Q.; Ma, J. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg (II) removal. J. Hazard. Mater. 2016, 316, 151–158. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, K.; Tan, X.; Wang, X.; Alsaedi, A.; Hayat, T.; Chen, C. Interaction Mechanism of Re (VII) with Zirconium Dioxide Nanoparticles Archored onto Reduced Graphene Oxides. ACS Sustain. Chem. Eng. 2017, 5, 2163–2171. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, Y.; Tang, J.; Xia, S. Effective Removal of Inorganic Mercury and Methylmercury from Aqueous Solution Using Novel Thiol-Functionalized Graphene Oxide/Fe-Mn Composite. J. Hazard. Mater. 2019, 366, 130–139. [Google Scholar] [CrossRef]
- Tan, B.; Zhao, H.; Zhang, Y.; Quan, X.; He, Z.; Zheng, W.; Shi, B. Amphiphilic PA-Induced Three-Dimensional Graphene Macrostructure with Enhanced Removal of Heavy Metal Ions. J. Colloid Interface Sci. 2018, 512, 853–861. [Google Scholar] [CrossRef]
- Wang, C.; Ge, H.; Zhao, Y.; Liu, S.; Zou, Y.; Zhang, W. Study on the adsorption of Cu (II) by folic acid functionalized magnetic graphene oxide. J. Magn. Magn. Mater. 2017, 423, 421–435. [Google Scholar] [CrossRef]
- Chen, B.; Bi, H.C.; Ma, Q.L.; Tan, C.L.; Cheng, H.F.; Chen, Y.; He, X.Y.; Sun, L.T.; Lim, T.T.; Huang, L.; et al. Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Sci. China-Mater. 2017, 60, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Bhalara, P.D.; Balasubramanian, K.; Banerjee, B.S. Spider–web textured electrospun composite of graphene for sorption of Hg (II) ions. Mater. Focus 2015, 4, 154–163. [Google Scholar] [CrossRef]
- Zhuang, Y.-T.; Jiang, R.; Wu, D.-F.; Yu, Y.-L.; Wang, J.-H. Selenocarrageenan-Inspired Hybrid Graphene Hydrogel as Recyclable Adsorbent for Efficient Scavenging Of Dyes and Hg2+ In Water Environment. J. Colloid Interface Sci. 2019, 540, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.L.; Tung, T.T.; Kabiri, S.; Matulick, N.; Tran, D.N.; Losic, D. Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. Sep. Purif. Technol. 2020, 238, 116441. [Google Scholar] [CrossRef]
- Zabihi, M.; Ahmadpour, A.; Asl, A. Mercury Adsorption on a Carbon Sorbent Derived from Walnut Shell. J Hazard. Mater. 2008, 174, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Cheng, L. Novel Cr (III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr (III) in aqueous solution. Desalin. Water Treat. 2015, 56, 204–215. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, H.; Liu, P.; Fang, W.; Geng, J. A novel modified graphene oxide/chitosan composite used as an adsorbent for Cr (VI) in aqueous solutions. Int. J. Biol. Macromol. 2016, 87, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Lingamdinne, J.R.; Koduru, Y.; Chang, R.R. Process Optimization and Adsorption Modeling Of Pb (II) on Nickel Ferrite-Reduced Graphene Oxide Nano-Composite. J. Mol. Liq. 2018, 250, 202–211. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr (VI) removal. J. Mater. Sci. 2014, 49, 4236–4245. [Google Scholar] [CrossRef]
- Fathi, S.; Kalantary, R.; Rashidi, A.; Karbassi, A. Hexavalent chromium adsorption from aqueous solutions using nanoporous graphene/Fe3O4 (NPG/Fe3O4: Modeling and optimization). Desalin. Water Treat. 2016, 57, 28284–28293. [Google Scholar] [CrossRef]
- Hou, T.; Kong, L.; Guo, X.; Wu, Y.; Wang, F.; Wen, Y.; Yang, H. Magnetic ferrous-doped graphene for improving Cr (VI) removal. Mater. Res. Express 2016, 3. [Google Scholar] [CrossRef]
- Harijan, D.; Chandra, V. Environment Friendly Synthesis of Magnetite-Graphene Composite for Adsorption of Toxic Chromium (VI) Ions from Drinking Water. Environ. Prog. Sustain. Energy 2016, 35, 700–705. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Cao, B.; Liu, X.; Lin, Z.; Yang, C.; Wu, R.; Su, X.; Wang, X. Facile synthesis of recycling Fe3O4/graphene adsorbents with potassium humate for Cr (VI) removal. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 560, 384–392. [Google Scholar] [CrossRef]
- Sun, X.; Chen, F.; Wei, J.; Zhang, F.; Pang, S. Preparation of magnetic triethylene tetramine-graphene oxide ternary nanocomposite and application for Cr (VI) removal. J. Taiwan Inst. Chem. Eng. 2016, 66, 328–335. [Google Scholar] [CrossRef]
- Li, L.; Luo, C.; Li, X.; Duan, H.; Wang, X. Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int. J. Biol. Macromol. 2014, 66, 172–178. [Google Scholar] [CrossRef]
- Dinda, D.; Gupta, A.; Saha, S. Removal of toxic Cr (VI) by UV-active functionalized graphene oxide for water purification. J. Mater. Chem. A 2013, 1, 11221–11228. [Google Scholar] [CrossRef]
- Anush, S.M.; Chandan, H.R.; Vishalakshi, B. Synthesis and Metal Ion Adsorption Characteristics of Graphene Oxide Incorporated Chitosan Schiff Base. Int. J. Biol. Macromol. 2019, 126, 908–916. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Ma, J. Environmental Application and Design of Alginate/Graphene Double-Network Nanocomposite Beads. In New Polymer Nanocomposites for Environmental Remediation; Hussain, C.M., Mishra, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–76. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Gu, H.; Rapole, S.; Wang, Q.; Luo, Z.; Haldolaarachchige, N.; Young, D.; Guo, Z. One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal. Environ. Sci. Technol. 2012, 46, 977–985. [Google Scholar] [CrossRef]
- Wang, W.; Cai, K.; Wu, X.; Shao, X.; Yang, X. A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr (VI). J. Alloys Compd. 2017, 722, 532–543. [Google Scholar] [CrossRef]
- Geng, Y.; Yin, Q.; Liang, Z.; Zhu, H. Polyethyleneimine Cross-Linked Graphene Oxide for Removing Hazardous Hexavalent Chromium: Adsorption Performance and Mechanism. Chem. Eng. J. 2019, 361, 1497–1510. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, S.; Si, Q.; Liu, Y.; Wu, G. One-Pot Preparation of P (TA-TEPA)-PAM-RGO Ternary Composite for High Efficient Cr (VI) Removal from Aqueous Solution. Chem. Engineering J. 2018, 343, 207–216. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, Z.; Cao, M. Surface modification of graphene oxide by pyridine derivatives for copper (II) adsorption from aqueous solutions. J. Ind. Eng. Chem. 2017, 53, 325–332. [Google Scholar] [CrossRef]
- Siu, P.; Koong, L.; Saleem, J.; Barford, J.; McKay, G. Equilibrium and kinetics of copper ions removal from wastewater by ion exchange. Chin. J. Chem. Eng. 2016, 24, 94–100. [Google Scholar] [CrossRef]
- Yi, X.; Sun, F.; Han, Z.; Han, F.; He, J.; Ou, M.; Gu, J.; Xu, X. Graphene Oxide Encapsulated Polyvinyl Alcohol/Sodium Alginate Hydrogel Microspheres for Cu (II) and U (VI) Removal. Ecotoxicol. Environ. Saf. 2018, 158, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hayati, B.; Maleki, A.; Najafi, F.; Daraei, H.; Gharibi, F.; McKay, G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J. Hazard. Mater. 2017, 336, 146–157. [Google Scholar] [CrossRef] [PubMed]
- White, R.L.; White, C.M.; Turgut, H.; Massoud, A.; Tian, Z.R. Comparative Studies on Copper Adsorption by Graphene Oxide and Functionalized Graphene Oxide Nanoparticles. J. Taiwan Inst. Chem. Eng. 2018, 85, 18–28. [Google Scholar] [CrossRef]
- Zhu, X.; Shan, Y.; Xiong, S.; Shen, J.; Wu, X. Brianyoungite/Graphene Oxide Coordination Composites for High Performance Cu2+ Adsorption and Tunable Deep-Red Photoluminescence. ACS Appl. Mater. Interfaces 2016, 8, 15848–15854. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Nie, H. Crumpled Graphene Balls as Rapid and Efficient Adsorbents for Removal of Copper Ions. J. Colloid Interface Sci. 2018, 530, 46–51. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Manivel, P.; Rajendrakumar, R.T.; Uyar, T. Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 2017, 325, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lv, S.; Si, C.; Liu, G.; Gao, H. The efficient adsorption removal of Cu (II) by using Fe3O4/TiO2/graphene ternary nanocomposites. J. Nanosci. Nanotechnol. 2017, 17, 5400–5407. [Google Scholar] [CrossRef]
- Hu, X.-J.; Liu, Y.-G.; Wang, H.; Chen, A.-W.; Zeng, G.-M.; Liu, S.-M.; Guo, Y.-M.; Hu, X.; Li, T.-T.; Wang, Y.-Q. Removal of Cu (II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195. [Google Scholar] [CrossRef]
- Yu, R.; Shi, Y.; Yang, D.; Liu, Y.; Qu, J.; Yu, Z.-Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 2017, 9, 21809–21819. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, Q.; Lv, L.; Pan, Y.; Zeng, G.; He, Y. Attached beta-cyclodextrin/gamma-(2, 3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal. Water Sci. Technol. 2017, 75, 2403–2411. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-F.; Li, L.; Hsieh, C.-T.; Juang, R.-S.; Ashraf Gandomi, Y. Fabrication of Magnetic Iron Oxide@Graphene Composites for Adsorption of Copper Ions from Aqueous Solutions. Mater. Chem. Phys. 2018, 219. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Wang, H.; Zeng, G.; Hu, X.; Guo, Y.; Li, T.; Chen, A.; Jiang, L.; Guo, F. Adsorption of copper by magnetic graphene oxide-supported beta-cyclodextrin: Effects of pH, ionic strength, background electrolytes, and citric acid. Chem. Eng. Res. Des. 2015, 93, 675–683. [Google Scholar] [CrossRef]
- Sui, N.; Wang, L.; Wu, X.; Li, X.; Sui, J.; Xiao, H.; Liu, M.; Wan, J.; Yu, W. Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv. 2015, 5, 746–752. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859–868. [Google Scholar] [CrossRef]
- Yang, P.; Liu, Q.; Liu, J.; Zhang, H.; Li, Z.; Li, R.; Liu, L.; Wang, J. Bovine Serum Albumin-Coated Graphene Oxide for Effective Adsorption of Uranium (VI) from Aqueous Solutions. Ind. Eng. Chem. Res. 2017, 56, 3588–3598. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Y.; Liu, Q.; Wang, J.; Jing, X.; Liu, L.; Liu, J.; Song, D. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 2015, 259, 752–760. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Zhang, Q.; Li, C.; Bao, C.; Liu, X.; Xiao, P. Adsorption of Au (III), Pd (II), and Pt (IV) from Aqueous Solution onto Graphene Oxide. J. Chem. Eng. Data 2013, 58, 209–216. [Google Scholar] [CrossRef]
- Yan, H.; Li, H.; Tao, X.; Li, K.; Yang, H.; Li, A.; Xiao, S.; Cheng, R. Rapid Removal and Separation of Iron (II) and Manganese (II) from Micropolluted Water Using Magnetic Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 9871–9880. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, C.; Bao, C.; Jia, Q.; Xiao, P.; Liu, X.; Zhang, Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta 2012, 93, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Sahraei, R.; Ghaemy, M. Synthesis and Fabrication of Antibacterial Hydrogel Beads Based on Modified-Gum Tragacanth/Poly (Vinyl Alcohol)/Ag (0) Highly Efficient Sorbent For Hard Water Softening. Chemosphere 2019, 225, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Pang, H.; Yu, S.; Ai, Y.; Ma, X.; Song, G.; Hayat, T.; Alsaedi, A.; Wang, X. Effect of Graphene Oxide Surface Modification on the Elimination of Co (II) From Aqueous Solutions. Chem. Eng. J. 2018, 344, 380–390. [Google Scholar] [CrossRef]
- Lee, S.P.; Ali, G.A.M.; Algarni, H.; Chong, K.F. Flake Size-Dependent Adsorption of Graphene Oxide Aerogel. J. Mol. Liq. 2019, 277, 175–180. [Google Scholar] [CrossRef]
- Guo, L.; Xu, Y.; Zhuo, M.; Liu, L.; Xu, Q.; Wang, L.; Shi, C.; Ye, B.; Fan, X.; Chen, W. Highly Efficient Removal of Gd (III) Using Hybrid Hydrosols of Carbon Nanotubes/Graphene Oxide in Dialysis Bags and Synergistic Enhancement Effect. Chem. Eng. J. 2018, 348. [Google Scholar] [CrossRef]
- Liao, M.; Wang, D. Electrosorption of Uranium (VI) by Highly Porous Phosphate-Functionalized Graphene Hydrogel. Appl. Surf. Sci. 2019, 484, 83–96. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Asghari, B.; Ramezanzadeh, G. Fabrication of an Efficient System for Zn Ions Removal from Industrial Wastewater Based on Graphene Oxide Nanosheets Decorated with Highly Crystalline Polyaniline Nanofibers (GO-PANI): Experimental and Ab Initio Quantum Mechanics Approaches. Chem. Eng. J. 2018, 337, 385–397. [Google Scholar] [CrossRef]
- Ahmed, M.; Elektorowicz, M.; Hasan, S. GO, Sio2, And Sno2 Nanomaterials as Highly Efficient Adsorbents for Zn2+ From Industrial Wastewater—A Second Stage Treatment to Electrically Enhanced Membrane Bioreactor. J. Water Process Eng. 2019, 31. [Google Scholar] [CrossRef]
Metal | Cu | Cr | Cd | Hg | Pb | As | Ni |
---|---|---|---|---|---|---|---|
Permissible limit, µg/L | 2000 | 50 | 3 | 3 | 10 | 10 | 700 |
Modification | Adsorbent | Surface Area (m2/g) | G/As Ratio (g/g) | pH | Max. As Conc. (mg/L) | Capacity (mg/g) | Max Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
- | GO | - | 16.6 | 7.6 | 20 | 74.1 | 100 | L | [44] |
Organic | Epoxy-GNP NC | 47.6 | 0.4 | - | 1000 | 190 | <99 | - | [45] |
Aminopyrazole-f-GO | - | 16.6 | 7.6 | 20 | 131.6 | 100 | L | [44] | |
EDTA-MChitosn/GO | 450 | 66 | 7 | 5 | 42.8 | 80.4 | F | [46] | |
Imino-Thiobiuret-rGO | - | 4 | 5 | 100 | 19 | 100 | L | [47] | |
Metal Oxide | G-Spinel CuFe2O4 | - | 2.4 | 4 | 1000 | 172.3 | 98 | F | [48] |
FeOx-GO NC | 341 | 0.7 | 7 | 1200 | 147 | 99.9 | L | [49] | |
Fe3O4/RGO/Cu- Zeolite | 61.6 | - | 6 | 2000 | 50.5 | - | - | [23] | |
Fe3O4/rGO | 109 | 2 | 5.5 | 100 | 54.5 | 100 | L | [50] | |
Magnetite-nonOxidG | 190 | 100 | 7.1 | 1 | 38 | - | S | [51] | |
Inorganic | Ag-Cu2O/rGO | - | 1000 | 7 | 2 | 11.5 | 83.9 | L | [50] |
LD-Hydroxide/GO | 35.4 | - | 5 | - | 183.1 | - | L | [52] | |
GO-Mesoporous SiO2 | 873 | 1 | - | 100 | 47.3 | 97.7 | L | [53] |
Metal | Adsorbent | Surface Area (m2/g) | Adsorbent/Adsorbate (g/g) | pH | Max. Adsorbate Conc. (mg/L) | Capacity (mg/g) | Max. Removal (%) | Ads. Isotherm | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag (III) | TEOA-GO-PC | - | 0.02 | - | 1000 | 850 | - | L | [175] |
Ag (III) | CNTs/GO | - | 0.167 | 5.9 | - | 534.8 | 86.42 | L | [77] |
Au (III) | CSGO5 | 4.2 | 0.4 | 4 | 500 | 1077 | - | L | [133] |
Au (III) | GO | - | 0.033 | 6 | 90 | 108.3 | - | L | [133] |
Ca (II) | pAMPS-g-GT | - | 0.3 | 7 | 1000 | 114.2 | 53.45 | L | [178] |
Co (II) | GO | 2.8 | 0.01 | 5.5 | 1000 | 21.3 | 93 | F | [159] |
Co (II) | M–GO | - | 40 | 6.5 | 50 | 17.1 | 100 | L | [176] |
Co (II) | zero-valent FeNP-G | - | 0.67 | 5.7 | 600 | 134.3 | 90 | F | [109] |
Co (II) | GO | - | 10 | 5 | 10 | 43.6 | - | S | [179] |
Co (II) | ZnO NR-rGO | - | 5 | 8 | 90.1 | 36.4 | 10 | L | [164] |
Co (II) | TRG | 10 | 2 | 6 | 700 | 733 | 90 | L | [81] |
Fe (II) | MGO | - | 0.36 | 5.5 | 84 | 43.2 | 100 | F | [176] |
Fe (III) | Cu(tpa).GO | - | 0.14 | 7 | 73.7 | 78 | - | L | [86] |
Fe (III) | GO-PAMAM 2.0 | - | - | - | - | 29.7 | - | - | [39] |
Fe (III) | GO | 330.7 | 0.6 | - | 20 | 133.3 | 90.5 | L | [180] |
Fe (III) | GO | - | - | 4 | 25 | 27.3 | - | L | [71] |
Gd (III) | CNT/GO | - | 4 | 5.9 | 12 | 427.7 | - | L | [181] |
Mn (II) | Cu(tpa).GO | - | 0.09 | 7 | 112.4 | 150 | - | L | [86] |
Mn (II) | MGO | - | 0.364 | 5.5 | 82.5 | 16.5 | 100 | F | [176] |
Mn (II) | EDA-RGO | 28 | 0.5 | 7 | 200 | 42.5 | - | L | [99] |
Nd (III) | GO-C4 | 372 | - | 7 | - | 232.6 | - | F | [135] |
Nd (III) | GO-C6 | 518 | - | 7 | - | 220 | - | F | [135] |
Nd (III) | GO-C8 | 62.4 | - | 7 | - | 312 | - | F | [135] |
Pd (II) | CSGO5 | 4.2 | 2 | 3 | 100 | 216.9 | - | L | [133] |
Pd (II) | GO | - | 0.06 | 6 | 50 | 80.8 | - | L | [133] |
Pt (IV) | GO | - | 0.06 | 6 | 50 | 71.4 | - | L | [133] |
Re (VII) | ZrO2@rGO | 272.73 | - | 4 | - | 43.6 | - | L | [88] |
Se (IV) | PAA-MGO | - | 0.38 | 5.8 | 4 | 120.1 | 99.3 | F | [42] |
Se (IV) | PAA-MGO | - | - | 3.1 | 0.4 | 156 | 99.3 | F | [81] |
Se (VI) | PAA-MGO | - | 0.38 | 5.8 | 4 | 83.7 | 99.7 | F | [159] |
Sr (II) | GO–Hap ZEA | 91.9 | 10 | 7 | 300 | 702.2 | 95 | L | [29] |
Th (IV) | a-GOM2 | 2001 | 0.25 | 3.8 | 1000 | 408.8 | - | L | [98] |
U (VI) | GO-BSA | - | - | 6 | 200 | 389 | 98 | L | [72] |
U (VI) | a-GOM2 | 2001 | 0.5 | 3.8 | 1000 | 66.8 | - | L | [98] |
U (VI) | PA–GO | - | 6.25 | 5.5 | 80 | 124.3 | - | L | [182] |
U (VI) | rGO/LDH | 256.8 | 3.84 | 4 | 130 | 277.8 | 99 | L | [72] |
Zn(II) | GO | - | 1.67 | 5 | 40 | 246 | 99.3 | L | [183] |
Zn (II) | GO | - | - | 6 | 2439.1 | - | 94 | L | [184] |
Zn (II) | GOSOxR@TiO2 | 208 | - | - | - | 285 | - | R-L | [83] |
Zn (II) | GO | - | 14.9 | 6.2 | 0.5 | 243 | 93.1 | L | [185] |
Zn (II) | Cu(tpa).GO | - | 0.11 | 7 | 91.7 | 89 | - | F | [86] |
Zn (II) | GO-PANI | - | 0.5 | 7 | 100 | - | 84.8 | L | [184] |
Zn (II) | GO-PAMAM 2.0 | - | - | - | - | 64.6 | - | - | [39] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Nada, A.; McKay, G.; Abdala, A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials 2020, 10, 595. https://doi.org/10.3390/nano10030595
Abu-Nada A, McKay G, Abdala A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials. 2020; 10(3):595. https://doi.org/10.3390/nano10030595
Chicago/Turabian StyleAbu-Nada, Abdulrahman, Gordon McKay, and Ahmed Abdala. 2020. "Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater" Nanomaterials 10, no. 3: 595. https://doi.org/10.3390/nano10030595
APA StyleAbu-Nada, A., McKay, G., & Abdala, A. (2020). Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials, 10(3), 595. https://doi.org/10.3390/nano10030595