Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field
Abstract
1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
3.1. Shape and Structure Characterizations
3.2. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dumestre, F.; Chaudret, B.; Amiens, C.; Respaud, M.; Fejes, P.; Renaud, P.; Zurcher, P. Unprecedented Crystalline Super-Lattices of Monodisperse Cobalt Nanorods. Angew. Chem. Int. Ed. 2003, 42, 5213–5216. [Google Scholar] [CrossRef] [PubMed]
- Piraux, L.; Encinas, A.; Vila, L.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Darques, M.; Elhoussine, F.; Michotte, S. Magnetic and Superconducting Nanowires. J. Nanosci. Nanotechnol. 2005, 5, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J.-Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501. [Google Scholar] [CrossRef]
- Nirmalraj, P.N.; Bellew, A.T.; Bell, A.P.; Fairfield, J.A.; McCarthy, E.K.; O’Kelly, C.; Pereira, L.F.C.; Sorel, S.; Morosan, D.; Coleman, J.N.; et al. Manipulating Connectivity and Electrical Conductivity in Metallic Nanowire Networks. Nano Lett. 2012, 12, 5966–5971. [Google Scholar] [CrossRef] [PubMed]
- Langley, D.P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N.D.; Bellet, D. Metallic nanowire networks: Effects of thermal annealing on electrical resistance. Nanoscale 2014, 6, 13535–13543. [Google Scholar] [CrossRef]
- Soumare, Y.; Garcia, C.; Maurer, T.; Chaboussant, G.; Ott, F.; Fiévet, F.; Piquemal, J.-Y.; Viau, G. Kinetically Controlled Synthesis of Hexagonally Close-Packed Cobalt Nanorods with High Magnetic Coercivity. Adv. Funct. Mater. 2009, 19, 1971–1977. [Google Scholar] [CrossRef]
- Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M.J.; Richard, V.; Fiévet, F. Growth of Magnetic Nanowires and Nanodumbbells in Liquid Polyol. Chem. Mater. 2007, 19, 2084–2094. [Google Scholar] [CrossRef]
- Mrad, K.; Schoenstein, F.; Nong, H.T.T.; Anagnostopoulou, E.; Viola, A.; Mouton, L.; Mercone, S.; Ricolleau, C.; Jouini, N.; Abderraba, M.; et al. Control of the crystal habit and magnetic properties of Co nanoparticles through the stirring rate. CrystEngComm 2017, 19, 3476–3484. [Google Scholar] [CrossRef]
- Ott, F.; Maurer, T.; Chaboussant, G.; Soumare, Y.; Piquemal, J.-Y.; Viau, G. Effects of the shape of elongated magnetic particles on the coercive field. J. Appl. Phys. 2009, 105, 013915. [Google Scholar] [CrossRef]
- Mercone, S.; Zighem, F.; Leridon, B.; Gaul, A.; Schoenstein, F.; Jouini, N. Morphology control of the magnetization reversal mechanism in Co80Ni20 nanomagnets. J. Appl. Phys. 2015, 117, 203905. [Google Scholar] [CrossRef]
- Zighem, F.; Mercone, S. Magnetization reversal behavior in complex shaped Co nanowires: A nanomagnet morphology optimization. J. Appl. Phys. 2014, 116, 193904. [Google Scholar] [CrossRef]
- Kulkarni, S.; Alurkar, M.; Kumar, A. Polymer support with Schiff base functional group with cobaltous palmitate as oxidation catalyst for cyclohexane. Appl. Catal. A Gen. 1996, 142, 243–254. [Google Scholar] [CrossRef]
- Roisnel, T.; Rodríguez-Carvajal, J. WinPLOTR: A Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 2001, 378, 118–123. [Google Scholar] [CrossRef]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Fellah, F.; Schoenstein, F.; Dakhlaoui-Omrani, A.; Chérif, S.M.; Dirras, G.; Jouini, N. Nanostructured cobalt powders synthesised by polyol process and consolidated by Spark Plasma Sintering: Microstructure and mechanical properties. Mater. Charact. 2012, 69, 1–8. [Google Scholar] [CrossRef]
- Chakroune, N.; Viau, G.; Ricolleau, C.; Fiévet-Vincent, F.; Fiévet, F. Cobalt-based anisotropic particles prepared by the polyol process. J. Mater. Chem. 2003, 13, 312–318. [Google Scholar] [CrossRef]
- Pousthomis, M.; Anagnostopoulou, E.; Panagiotopoulos, I.; Boubekri, R.; Fang, W.; Ott, F.; Atmane, K.A.; Piquemal, J.-Y.; Lacroix, L.-M.; Viau, G. Localized magnetization reversal processes in cobalt nanorods with different aspect ratios. Nano Res. 2015, 8, 2231–2241. [Google Scholar] [CrossRef]
- Kha, T.M.; Schoenstein, F.; Zighem, F.; Nowak, S.; Leridon, B.; Jouini, N.; Mercone, S. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co-based nanowires. J. Magn. Magn. Mater. 2017, 422, 221–226. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, Q.; Tao, N.; Ye, J.; Tang, Y.; Feng, J.; Gu, X. The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly. Nanotechnology 2007, 18, 345301. [Google Scholar] [CrossRef]
- Dakhlaoui, A.; Smiri, L.S.; Babadjian, G.; Schoenstein, F.; Molinié, P.; Jouini, N. Controlled Elaboration and Magnetic Properties of Submicrometric Cobalt Fibers. J. Phys. Chem. C 2008, 112, 14348–14354. [Google Scholar] [CrossRef]
- Lakhdar, A.; Borges, J.P.; Ben Haj Amara, A.; Dakhlaoui-Omrani, A. Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties. J. Magn. Magn. Mater. 2017, 425, 6–11. [Google Scholar] [CrossRef]
- Farghaly, A.A.; Huba, Z.J.; Carpenter, E.E. Magnetic field assisted polyol synthesis of cobalt carbide and cobalt microwires. J. Nanopart. Res. 2012, 14, 1159. [Google Scholar] [CrossRef]
- Atmane, K.A.; Michel, C.; Piquemal, J.-Y.; Sautet, P.; Beaunier, P.; Giraud, M.; Sicard, M.; Nowak, S.; Losno, R.; Viau, G. Control of the anisotropic shape of cobalt nanorods in the liquid phase: From experiment to theory … and back. Nanoscale 2014, 6, 2682–2692. [Google Scholar] [CrossRef]
- Wang, F.; Gu, H.; Zhang, Z. Preparation of cobalt nanocrystals in the homogenous solution with the presence of a static magnetic field. Mater. Res. Bull. 2003, 38, 347–351. [Google Scholar] [CrossRef]
- Wang, M.; Xiong, J.; Sun, Y.; Chen, Q. Assembly of non-crystalline cobalt particles into crystalline tricobalt tetroxide nanowires under an external magnetic field. CrystEngComm 2010, 12, 3262–3266. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Q.; Li, G.; Du, J.; Wang, X.; He, J. Effects of a high magnetic field on structure evolution and properties of the molecular beam vapor deposited Fe60Ni40 nanoparticles thin films. J. Magn. Magn. Mater. 2014, 372, 91–96. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. Adv. Mater. 2004, 16, 137–140. [Google Scholar] [CrossRef]
- Gandha, K.; Mohapatra, J.; Liu, J.P. Coherent magnetization reversal and high magnetic coercivity in Co nanowire assemblies. J. Magn. Magn. Mater. 2017, 438, 41–45. [Google Scholar] [CrossRef]
- Gandha, K.; Elkins, K.; Poudyal, N.; Liu, X.; Liu, J.P. High Energy Product Developed from Cobalt Nanowires. Sci. Rep. 2014, 4, 5345. [Google Scholar] [CrossRef]
- Anagnostopoulou, E.; Grindi, B.; Lacroix, L.M.; Ott, F.; Panagiotopoulos, I.; Viau, G. Dense arrays of cobalt nanorods as rare-earth free permanent magnets. Nanoscale 2016, 8, 4020–4029. [Google Scholar] [CrossRef]
- Nong, H.T.T.; Mrad, K.; Schoenstein, F.; Piquemal, J.Y.; Jouini, N.; Leridon, B.; Mercone, S. Stacking faults density driven collapse of magnetic energy in hcp -cobalt nano-magnets. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 025012. [Google Scholar] [CrossRef]
- Ener, S.; Anagnostopoulou, E.; Dirba, I.; Lacroix, L.-M.; Ott, F.; Blon, T.; Piquemal, J.-Y.; Skokov, K.P.; Gutfleisch, O.; Viau, G. Consolidation of cobalt nanorods: A new route for rare-earth free nanostructured permanent magnets. Acta Mater. 2018, 145, 290–297. [Google Scholar] [CrossRef]
- Fang, W.; Panagiotopoulos, I.; Ott, F.; Boué, F.; Ait-Atmane, K.; Piquemal, J.-Y.; Viau, G.; Dalmas, F. Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets. J. Nanopart. Res. 2014, 16, 2265. [Google Scholar] [CrossRef]
- Maurer, T.; Zighem, F.; Fang, W.; Ott, F.; Chaboussant, G.; Soumare, Y.; Atmane, K.A.; Piquemal, J.-Y.; Viau, G. Dipolar interactions in magnetic nanowire aggregates. J. Appl. Phys. 2011, 110, 123924. [Google Scholar] [CrossRef]
- Nong, H.T.T.; Mai, T.K.; Mercone, S. Tunable magnetic anisotropy in nanostructured permanent magnet: A micromagnetic study. J. Magn. Magn. Mater. 2019, 477, 109–117. [Google Scholar] [CrossRef]
- Zeng, H.; Skomski, R.; Menon, L.; Liu, Y.; Bandyopadhyay, S.; Sellmyer, D.J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 2002, 65, 134426. [Google Scholar] [CrossRef]
Samples | TEM | XRD (Lhkl a), nm | δd, % | ||||
---|---|---|---|---|---|---|---|
L(σ) b, nm | D(σ) c, nm | L/D | L100 | L002 | L110 | ||
H0-OR | 256(39) | 35(13) | 6.5 | 10.9 | 19.2 | 11.9 | 5.21 |
H0.25-OR | 335(25) | 31(11) | 10.8 | 15.3 | 19.7 | 17.5 | 5.08 |
H0.5-OR | 418(42) | 32(7) | 13.1 | 15.4 | 23.3 | 15.5 | 4.29 |
H0.75-OR | 465(48) | 25(5) | 18.6 | 17.0 | 24.5 | 17.5 | 4.08 |
H1.0-OR | 482(54) | 24(4) | 20.1 | 17.3 | 32.4 | 18.4 | 3.09 |
H1.25-OR | 538(85) | 19(5) | 28.2 | 13.2 | 33.8 | 17.2 | 2.96 |
H1.25-CR | 563(79) | 15(4) | 37.5 | 17.5 | 78.8 | 17.6 | 1.27 |
Samples | HC (Oe) | MR (emu/g) | MS (emu/g) | MR/MS | (BH)max (MGOe) | Aspect Ratio (L/D) |
---|---|---|---|---|---|---|
H0-OR | 3109 | 66.8 | 133.0 | 0.502 | 3.02 | 6.5 |
H0.25-OR | 4037 | 73.5 | 136.1 | 0.540 | 4.46 | 10.8 |
H0.5-OR | 4775 | 82.9 | 144.2 | 0.575 | 5.96 | 13.1 |
H0.75-OR | 5218 | 87.9 | 147.7 | 0.595 | 7.23 | 18.6 |
H1.0-OR | 5724 | 97.5 | 149.8 | 0.651 | 9.10 | 20.1 |
H1.25-OR | 5830 | 106.8 | 152.5 | 0.700 | 10.72 | 28.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bousnina, M.A.; Dakhlaoui-Omrani, A.; Schoenstein, F.; Soumare, Y.; Barry, A.H.; Piquemal, J.-Y.; Viau, G.; Mercone, S.; Jouini, N. Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field. Nanomaterials 2020, 10, 334. https://doi.org/10.3390/nano10020334
Bousnina MA, Dakhlaoui-Omrani A, Schoenstein F, Soumare Y, Barry AH, Piquemal J-Y, Viau G, Mercone S, Jouini N. Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field. Nanomaterials. 2020; 10(2):334. https://doi.org/10.3390/nano10020334
Chicago/Turabian StyleBousnina, Mohamed Ali, Amel Dakhlaoui-Omrani, Frédéric Schoenstein, Yaghoub Soumare, Aliou Hamady Barry, Jean-Yves Piquemal, Guillaume Viau, Silvana Mercone, and Noureddine Jouini. 2020. "Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field" Nanomaterials 10, no. 2: 334. https://doi.org/10.3390/nano10020334
APA StyleBousnina, M. A., Dakhlaoui-Omrani, A., Schoenstein, F., Soumare, Y., Barry, A. H., Piquemal, J.-Y., Viau, G., Mercone, S., & Jouini, N. (2020). Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field. Nanomaterials, 10(2), 334. https://doi.org/10.3390/nano10020334