Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance
Abstract
1. Introduction
2. Experimental
2.1. Synthesis of TiO2 Nanoparticles and Nanotubes
2.2. Fabrication of DSCs
2.3. Characterization
3. Results and Discussion
3.1. Crystal Structure and Morphology Characterization
3.2. Currents-Voltage Characteristics
3.3. Impedance Spectroscopy Analysis
3.4. DSCs operated under various light intensities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Wang, M.; Chen, P.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. The Influence of Charge Transport and Recombination on the Performance of Dye-Sensitized Solar Cells. Chem. Phys. Chem. 2009, 10, 290–299. [Google Scholar] [CrossRef]
- Mohammadpour, R.; Zad, A.I.; Hagfeldt, A.; Boschloo, G. Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells. Chem. Phys. Chem. 2010, 11, 2140–2145. [Google Scholar] [CrossRef]
- Adhyaksa, G.W.P.; Lee, G.I.; Baek, S.W.; Lee, J.Y.; Kang, J.K. Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells. Sci. Rep. 2013, 3, 2711. [Google Scholar] [CrossRef]
- Wang, P.; Klein, C.C.; Humphry-Baker, R.; Zakeeruddin, S.M.; Grätzel, M. Stable ≥8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Appl. Phys. Lett. 2005, 86, 123508. [Google Scholar] [CrossRef]
- Nattestad, A.; Mozer, A.J.; Fischer, M.K.R.; Cheng, Y.B.; Mishra, A.; Bäuerle, P.; Bach, U. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nat. Mater. 2010, 9, 31–35. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Larina, L.; Shevaleevskiy, O.; Ahn, B.T. Effect of Nb Doping of TiO2 Electrode on Charge Transport in Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2011, 158, B1281. [Google Scholar] [CrossRef]
- Nikolay, T.; Larina, L.; Shevaleevskiy, O.; Ahn, B.T. Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1480. [Google Scholar] [CrossRef]
- Bak, T.; Nowotny, M.K.; Sheppard, L.R.; Nowotny, J. Mobility of electronic charge carriers in titanium dioxide. J. Phys. Chem. C 2008, 112, 12981–12987. [Google Scholar] [CrossRef]
- Bisquert, J.; Gra, M. Three-Channel Transmission Line Impedance Model for Mesoscopic Oxide Electrodes Functionalized with a Conductive Coating. J. Phys. Chem. B 2006, 110, 11284–11290. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.H.; Sardashti, M.K. Preparation of Glass Plate-Supported Nanostructure ZnO Thin Film Deposited by Sol-Gel Spin-Coating Technique and Its Photocatalytic Degradation to Monoazo Textile Dye. J. Nanomater. 2008, 2008, 6–11. [Google Scholar] [CrossRef]
- Yong, S.M.; Tsvetkov, N.; Larina, L.; Ahn, B.T.; Kim, D.K. Ultrathin SnO2 layer for efficient carrier collection in dye-sensitized solar cells. Thin Solid Film. 2014, 556, 503–508. [Google Scholar] [CrossRef]
- Giannouli, M.; Govatsi, K.; Syrrokostas, G.; Yannopoulos, S.N.; Leftheriotis, G. Factors affecting the power conversion efficiency in ZnO DSSCs: Nanowire vs. nanoparticles. Materials (Basel) 2018, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.I.; Sung, H.K.; Lee, S.J.; Kim, W.H.; Kim, D.H.; Han, Y.S. Photovoltaic Performance of Dye-Sensitized Solar Cells Containing ZnO Microrods. Nanomaterials 2019, 9, 1645. [Google Scholar] [CrossRef]
- Kim, S.G.; Ju, M.J.; Choi, I.T.; Choi, W.S.; Choi, H.J.; Baek, J.B.; Kim, H.K. Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells. RSC Adv. 2013, 3, 16380–16386. [Google Scholar] [CrossRef]
- Roose, B.; Pathak, S.; Steiner, U. Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 2015, 44, 8326–8349. [Google Scholar] [CrossRef]
- van de Lagemaat, J.; Kopidakis, N.; Neale, N.; Frank, A. Effect of nonideal statistics on electron diffusion in sensitized nanocrystalline TiO2. Phys. Rev. B 2005, 71, 035304. [Google Scholar] [CrossRef]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. 2011, 90, 2011–2075. [Google Scholar] [CrossRef]
- Salian, G.D.; Koo, B.M.; Lefevre, C.; Cottineau, T.; Lebouin, C.; Tesfaye, A.T.; Knauth, P.; Keller, V.; Djenizian, T. Niobium Alloying of Self-Organized TiO2 Nanotubes as an Anode for Lithium-Ion Microbatteries. Adv. Mater. Technol. 2018, 3, 1700274. [Google Scholar] [CrossRef]
- Adachi, M.; Murata, Y.; Okada, I.; Yoshikawa, S. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. J. Electrochem. Soc. 2003, 488–493. [Google Scholar] [CrossRef]
- Tio, D.; Tsuchiya, H.; Ghicov, A.; Schmuki, P.; Maca, J.M. Dye-sensitized anodic TiO2 nanotubes. Electrochem. Commun. 2005, 7, 1133–1137. [Google Scholar]
- Yang, M.; Kim, D.; Jha, H.; Lee, K.; Paul, J.; Schmuki, P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 2011, 47, 2032–2034. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Tien, M.S.; Lin, L.Y.; Xiao, B.C.; Hong, S.T. Enhancing the Contact Area of Ti Wire as Photoanode Substrate of Flexible Fiber-Type Dye-Sensitized Solar Cells Using the TiO2 Nanotube Growth and Removal Technique. Nanomaterials 2019, 9, 1521. [Google Scholar] [CrossRef]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11, 1307–1311. [Google Scholar] [CrossRef]
- Lü, X.; Mou, X.; Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu, F.; Huang, S. Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer. Adv. Funct. Mater. 2010, 20, 509–515. [Google Scholar] [CrossRef]
- Sanjinés, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Lévy, F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75, 2945. [Google Scholar] [CrossRef]
- Klick, C.C.; Schulman, J.H. Luminescence in Solids. In Solid State Physics; Academic Press: Cambridge, MA, USA, 1957; Volume 5, pp. 97–172. [Google Scholar]
- Pan, X.; Yang, M.Q.; Fu, X.; Zhang, N.; Xu, Y.J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Serot, I. Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit. J. Am. Chem. Soc. 2004, 126, 13550–13559. [Google Scholar] [CrossRef] [PubMed]
- Fabregat-santiago, F.; Bisquert, J. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. 2005, 87, 117–131. [Google Scholar] [CrossRef]
- Sun, X.; Chang, X.; Tuo, W.; Wang, D.; Li, K. Performance comparison of dye-sensitized solar cells by using different metal oxide—coated TiO2 as the photoanode. AIP Adv. 2014, 4, 031304. [Google Scholar]
- Sarker, S.; Seo, H.W.; Kim, D.M. Electrochemical impedance spectroscopy of dye-sensitized solar cells with thermally degraded N719 loaded TiO2. Chem. Phys. Lett. 2013, 585, 193–197. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, X.; Zhou, X.; Li, X.; Lin, Y. Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 785–790. [Google Scholar] [CrossRef]
Photo-Electrode | VOC (V) | JSC (mA/cm2) | FF | PCE (%) | RS | RW |
---|---|---|---|---|---|---|
TiO2 NPs | 0.69 ± 0.01 (0.70) | 13.8 ± 0.2 (14.0) | 0.59 ± 0.02 (0.61) | 5.6 ± 0.4 (6.0) | 14.5 ± 0.3 (14.2) | 35.1 ± 2.4 (37.5) |
Nb-doped TiO2 NPs | 0.67 ± 0.01 (0.68) | 14.2 ± 0.1 (14.3) | 0.66 ± 0.01 (0.67) | 6.3 ± 0.02 (6.5) | 10.7 ± 0.4 (10.3) | 36.6 ± 2.1 (38.7) |
TiO2 NTs | 0.72 ± 0.01 (0.73) | 14.4 ± 0.2 (14.6) | 0.64 ± 0.02 (0.66) | 6.7 ± 0.4 (7.1) | 14.6 ± 0.5 (14.1) | 44.1 ± 1.5 (45.6) |
Nb-doped TiO2 NTs | 0.71 ± 0.01 (0.72) | 14.8 ± 0.2 (15.0) | 0.73 ± 0.02 (0.75) | 7.7 ± 0.3 (8.1) | 10.6 ± 0.2 (10.4) | 42.9 ± 3.2 (46.1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsvetkov, N.; Larina, L.; Ku Kang, J.; Shevaleevskiy, O. Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance. Nanomaterials 2020, 10, 296. https://doi.org/10.3390/nano10020296
Tsvetkov N, Larina L, Ku Kang J, Shevaleevskiy O. Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance. Nanomaterials. 2020; 10(2):296. https://doi.org/10.3390/nano10020296
Chicago/Turabian StyleTsvetkov, Nikolai, Liudmila Larina, Jeung Ku Kang, and Oleg Shevaleevskiy. 2020. "Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance" Nanomaterials 10, no. 2: 296. https://doi.org/10.3390/nano10020296
APA StyleTsvetkov, N., Larina, L., Ku Kang, J., & Shevaleevskiy, O. (2020). Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance. Nanomaterials, 10(2), 296. https://doi.org/10.3390/nano10020296