Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, G.; Wu, J.Z.; Robinson, J.T.; Wang, H.; Zhang, B.; Dai, H. Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nat. Commun. 2012, 3, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Price, J.; Hong, G.; Tabakman, S.M.; Wang, H.; Jarrell, J.A.; Feng, J.; Utz, P.J.; Dai, H. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013, 6, 113–120. [Google Scholar] [CrossRef]
- Zhang, B.; Kumar, R.B.; Dai, H.; Feldman, B.J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 2014, 20, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pinsky, B.A.; Ananta, J.S.; Zhao, S.; Arulkumar, S.; Wan, H.; Sahoo, M.K.; Abeynayake, J.; Waggoner, J.J.; Hopes, C. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med. 2017, 23, 548. [Google Scholar] [CrossRef]
- Jun, Y.C.; Huang, K.C.Y.; Brongersma, M.L. Plasmonic beaming and active control over fluorescent emission. Nat. Commun. 2011, 2, 283. [Google Scholar] [CrossRef]
- Shadrivov, I.V.; Kapitanova, P.V.; Maslovski, S.I.; Kivshar, Y.S. Metamaterials controlled with light. Phys. Rev. Lett. 2012, 109, 083902. [Google Scholar] [CrossRef]
- Lumdee, C.; Toroghi, S.; Kik, P.G. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas. ACS Nano 2012, 6, 6301–6307. [Google Scholar] [CrossRef]
- Abass, A.; Rodriguez, S.R.K.; Ako, T.; Aubert, T.; Verschuuren, M.; van Thourhout, D.; Beeckman, J.; Hens, Z.; Rivas, J.G.; Maes, B. Active liquid crystal tuning of metallic nanoantenna enhanced light emission from colloidal quantum dots. Nano Lett. 2014, 14, 5555–5560. [Google Scholar] [CrossRef]
- Kossyrev, P.A.; Yin, A.; Cloutier, S.G.; Cardimona, D.A.; Huang, D.; Alsing, P.M.; Xu, J.M. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005, 5, 1978–1981. [Google Scholar] [CrossRef]
- Dickson, W.; Wurtz, G.A.; Evans, P.R.; Pollard, R.J.; Zayats, A.V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 2008, 8, 281–286. [Google Scholar] [CrossRef]
- Khatua, S.; Chang, W.-S.; Swanglap, P.; Olson, J.; Link, S. Active modulation of nanorod plasmons. Nano Lett. 2011, 11, 3797–3802. [Google Scholar] [CrossRef] [PubMed]
- Dridi, M.; Vial, A.J. FDTD modeling of gold nanoparticles in a nematic liquid crystal: Quantitative and qualitative analysis of the spectral tunability. Phys. Chem. C 2010, 114, 9541–9545. [Google Scholar] [CrossRef]
- Hsiao, V.K.; Zheng, Y.B.; Juluri, B.K.; Huang, T.J. Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater. 2008, 20, 3528–3532. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Liang, Y.; Li, L.; Masson, J.F.; Peng, W. Liquid crystal filled surface plasmon resonance thermometer. Opt. Express 2016, 24, 10904–10911. [Google Scholar] [CrossRef] [PubMed]
- Cetin, A.E.; Mertiri, A.; Huang, M.; Erramilli, S.; Altug, H. Thermal tuning of surface plasmon polaritons using liquid crystals. Adv. Opt. Mater. 2013, 1, 915–920. [Google Scholar] [CrossRef]
- Franklin, D.; Chen, Y.; Vazquez-Guardado, A.; Modak, S.; Boroumand, J.; Xu, D.; Wu, S.-T.; Chanda, D. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat. Commun. 2015, 6, 7337. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Su, C.-W.; Yang, Z.-H.; Cheypesh, Y.I.; Yang, J.-H.; Reshetnyak, V.Y.; Chen, K.-P.; Lee, W. Electrically active nanoantenna array enabled by varying the molecular orientation of an interfaced liquid crystal. RSC Adv. 2016, 6, 84500–84504. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Chen, P.; Liedberg, B. Curvature of the localized surface plasmon resonance peak. Anal. Chem. 2014, 86, 7399–7405. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Huang, S.-M.; Yeh, E.-R.; Lee, W. Temperature-dependent electrical and dielectric properties of nematic liquid crystals doped with ferroelectric particles. Displays 2016, 44, 61–65. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Gwag, J.S.; Lee, S.H.; Park, K.-H.; Park, W.S.; Han, K.-Y.; Jhun, C.G.; Yoon, T.-H.; Kim, J.C.; Song, D.; Shin, D. Simple method for measuring the high pretilt angle of nematic liquid crystals. J. Appl. Phys. 2003, 93, 4936. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, H.-C.; Kuo, T.-R.; Wang, C.-T.; Lin, J.-D.; Chen, C.-C.; Hsiao, Y.-C. Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals. Nanomaterials 2020, 10, 290. https://doi.org/10.3390/nano10020290
Yen H-C, Kuo T-R, Wang C-T, Lin J-D, Chen C-C, Hsiao Y-C. Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals. Nanomaterials. 2020; 10(2):290. https://doi.org/10.3390/nano10020290
Chicago/Turabian StyleYen, Hung-Chi, Tsung-Rong Kuo, Chun-Ta Wang, Jia-De Lin, Chia-Chun Chen, and Yu-Cheng Hsiao. 2020. "Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals" Nanomaterials 10, no. 2: 290. https://doi.org/10.3390/nano10020290
APA StyleYen, H.-C., Kuo, T.-R., Wang, C.-T., Lin, J.-D., Chen, C.-C., & Hsiao, Y.-C. (2020). Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals. Nanomaterials, 10(2), 290. https://doi.org/10.3390/nano10020290