Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework
Abstract
:1. Introduction
2. Related Works
2.1. Direct Exit-Wave Reconstruction from a Single Defocused Image
2.2. Image Simulation Verification Method
- Prediction of the atomic structure from the raw data obtained from the CCD.
- Conversion of the expected atomic structure into the exit wave by using the multislice method.
- Conduction of the image simulation by using the exit wave and CTF (Equation (6)).
- Verification of the atomic structure by comparing the result of the image simulation to the raw data.
- Iteration of the structure modulation until the simulated results of the expected atomic structure become similar to the actual image up to the desired level.
2.3. FFT-Based Image Deconvolution
2.4. Autoencoder
3. Materials and Methods
3.1. CDDAE Framework
3.2. Training Data
4. Results
4.1. Direct Exit-Wave Reconstruction from Single Image of Monolayer Graphene
4.2. Identification of Cu Single Atom from Single Image
4.3. Denoising Performance Metrics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Gou, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Han, H.N.; Kim, M. Analyzing the microstructure and related properties of 2D materials by transmission electron microscopy. Appl. Microsc. 2019, 49, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Deng, Q.; Bachmatiuk, A.; Sandeep, G.; Popov, A.A.; Eckert, J.; Rümmeli, M.H. Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores. Science 2014, 343, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shi, T.; Cai, T.; Xu, T.; Sun, L.-T.; Wu, X.; Yu, D. Self healing of defected graphene. Appl. Phys. Lett. 2013, 102, 103107. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.H.; Park, H.J.; Ryou, J.; Park, J.; Lee, J.; Kim, G.; Shin, H.S.; Bielawski, C.W.; Ruoff, R.S.; Hong, S.; et al. Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 2015, 7, 10600–10605. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.J.; McBride, W.; O’Leary, N.L.; Oxley, M.P. Exit wave reconstruction at atomic resolution. Ultramicroscopy 2004, 100, 91–104. [Google Scholar] [CrossRef]
- Morgan, A.J.; Martin, A.; D’Alfonso, A.J.; Putkunz, C.T.; Allen, L. Direct exit-wave reconstruction from a single defocused image. Ultramicroscopy 2011, 111, 1455–1460. [Google Scholar] [CrossRef]
- Kirkland, E.J. Improved high resolution image processing of bright field electron micrographs: I. Theory. Ultramicroscopy 1984, 15, 151–172. [Google Scholar] [CrossRef]
- Wade, R.-H. A brief look at imaging and contrast transfer. Ultramicroscopy 1992, 46, 145–156. [Google Scholar] [CrossRef]
- Zemlin, F.; Weiss, K.; Schiske, P.; Kunath, W.; Herrmann, K.H. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 1978, 3, 49–60. [Google Scholar] [CrossRef]
- Bursill, L.A.; Wilson, A.R. Electron-optical imaging of the hollandite structure at 3 Å resolution. Acta Crystallogr. Sect. A: Found. Adv. 1977, 33, 672–676. [Google Scholar] [CrossRef]
- Cowley, J.M.; Moodie, A.F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 1957, 10, 609–619. [Google Scholar] [CrossRef]
- Goodman, P.; Moodie, A.F. Numerical Evaluation of N-Beam Wave-Functions in Electron-Scattering by Multi-Slice Method. Acta Crystallogr. Sect. A: Found. Adv. 1974, A30, 280–290. [Google Scholar] [CrossRef]
- Ishizuka, K.; Uyeda, N. A new theoretical and practical approach to the multislice method. Acta Crystallogr. Sect. A: Found. Adv. 1977, A33, 740–749. [Google Scholar] [CrossRef]
- Koch, C. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. Ph.D. Thesis, Arizona State University, Tempe, Arizona, April 2002. [Google Scholar]
- Kazubek, M. Wavelet domain image denoising by thresholding and Wiener filtering. IEEE Signal Process. Lett. 2003, 10, 324–326. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, J.; Lai, W.-S.; Lau, R.W.H.; Yang, M.-H. Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6969–6977. [Google Scholar]
- Kruse, J.; Rother, C.; Schmidt, U. Learning to Push the Limits of Efficient FFT-Based Image Deconvolution. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4596–4604. [Google Scholar]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Yu, J.; Wang, R.; Li, C.; Tao, D. Coupled Deep Autoencoder for Single Image Super-Resolution. IEEE Trans. Cybern. 2015, 47, 27–37. [Google Scholar] [CrossRef]
- Sakurada, M.; Yairi, T. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (MLSDA’14), Gold Coast, QLD, Australia, 2 December 2014; pp. 4–11. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 30 January 2017).
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Ramasse, Q.M.; Zan, R.; Bangert, U.; Boukhvalov, D.W.; Son, Y.W.; Novoselov, K.S. Direct Experimental Evidence of Metal-Mediated Etching of Suspended Graphene. ACS Nano 2012, 6, 4063–4071. [Google Scholar] [CrossRef] [Green Version]
- Kano, E.; Hashimoto, A.; Kaneko, T.; Tajima, N.; Ohno, T.; Takeguchi, M. Interactions between C and Cu atoms in single-layer graphene: Direct observation and modelling. Nanoscale 2016, 8, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Marconcini, P.; Cresti, A.; Roche, S. Effect of the Channel Length on the Transport Characteristics of Transistors Based on Boron-Doped Graphene Ribbons. Materials 2018, 11, 667. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.B.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
Encoder | Act | Output Shape | Parameters |
---|---|---|---|
Input image | - | 1 × 128 × 128 | - |
Convolution 3 × 3 | ReLU | 64 × 128 × 128 | 1048576 |
Convolution 3 × 3 | ReLU | 64 × 128 × 128 | 1048576 |
Downsample | 64 × 64 × 64 | ||
Convolution 3 × 3 | ReLU | 128 × 64 × 64 | 524288 |
Convolution 3 × 3 | ReLU | 128 × 64 × 64 | 524288 |
Downsample | 128 × 32 × 32 | ||
Decoder1 | Act | Output Shape | Parameters |
Upsample | 128 × 64 × 64 | ||
Convolution 3 × 3 | Tanh | 128 × 64 × 64 | 524288 |
Convolution 3 × 3 | Tanh | 128 × 64 × 64 | 524288 |
Upsample | 128 × 64 × 128 | ||
Convolution 3 × 3 | Tanh | 64 × 128 × 128 | 1048576 |
Convolution 3 × 3 | Tanh | 64 × 128 × 128 | 1048576 |
Convolution 1 × 1 | 1 × 128 × 128 | ||
Decoder2 | Act | Output Shape | Parameters |
Upsample | 128 × 64 × 64 | ||
Convolution 3 × 3 | Tanh | 128 × 64 × 64 | 524288 |
Convolution 3 × 3 | Tanh | 128 × 64 × 64 | 524288 |
Upsample | 128 × 64 × 128 | ||
Convolution 3 × 3 | Tanh | 64 × 128 × 128 | 1048576 |
Convolution 3 × 3 | Tanh | 64 × 128 × 128 | 1048576 |
Convolution 1 × 1 | 1 × 128 × 128 |
Method | SNR | PSNR | SSIM |
---|---|---|---|
Noise-added | 9.1164 | 17.5501 | 0.5443 |
Wiener filtered | 16.7889 | 25.2226 | 0.9229 |
CDDAE framework | 18.3390 | 26.7727 | 0.9440 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, Y.; Kim, J.; Lee, Z. Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework. Nanomaterials 2020, 10, 1977. https://doi.org/10.3390/nano10101977
Lee J, Lee Y, Kim J, Lee Z. Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework. Nanomaterials. 2020; 10(10):1977. https://doi.org/10.3390/nano10101977
Chicago/Turabian StyleLee, Jongyeong, Yeongdong Lee, Jaemin Kim, and Zonghoon Lee. 2020. "Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework" Nanomaterials 10, no. 10: 1977. https://doi.org/10.3390/nano10101977
APA StyleLee, J., Lee, Y., Kim, J., & Lee, Z. (2020). Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework. Nanomaterials, 10(10), 1977. https://doi.org/10.3390/nano10101977