Formation of Free-Standing Inverse Opals with Gradient Pores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Polystyrene Microspheres in Different Sizes
2.2. Fabrication of Multilayer Colloidal Crystals and Their Inverse Opals
2.3. Material Characterization
3. Results and Discussion
3.1. Preparation of Multilayer Colloidal Crystals
3.1.1. Size Effect
3.1.2. pH Effect
3.1.3. Electric Field
3.1.4. Solid Loading of PS Suspension
3.2. Fabrication of Multilayer Inverse Opals
3.3. Characterization of Multilayer Inverse Opals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bollella, P. Porous gold: A new frontier for enzyme-based electrodes. Nanomaterials 2020, 10, 722. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Qiao, X.; Shen, J.; Liu, G.; Sun, T.; Wu, H.; Hou, H.; Liu, X.; Zhang, Y.; Ji, X. Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim. Acta 2019, 299, 540–548. [Google Scholar]
- Escalé, P.; Rubatat, L.; Billon, L.; Save, M. Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 2012, 48, 1001–1025. [Google Scholar]
- Riccomagno, E.; Shayganpour, A.; Salerno, M. Optimization of Anodic Porous Alumina Fabricated from Commercial Aluminum Food Foils: A Statistical Approach. Materials 2017, 10, 417. [Google Scholar] [CrossRef]
- Karczewski, K.; Stepniowski, W.J.; Salerno, M. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys. Materials 2017, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Shayganpour, A.; Rebaudi, A.; Cortella, P.; Diaspro, A.; Salerno, M. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration. Beilstein J. Nanotechnol. 2015, 6, 2183–2192. [Google Scholar]
- Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures—Fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar]
- Zhu, R.; McLachlan, M.; Reyntjens, S.; Tariq, F.; Ryan, M.P.; McComb, D.W. Controlling the electrodeposition of mesoporous metals for nanoplasmonics. Nanoscale 2009, 1, 355–359. [Google Scholar]
- Liao, C.H.; Hung, P.S.; Cheng, Y.; Wu, P.W. Combination of microspheres and sol-gel electrophoresis for the formation of large-area ordered macroporous SiO2. Electrochem. Commun. 2017, 85, 6–10. [Google Scholar]
- Koussi-Daoud, S.; Majerus, O.; Schaming, D.; Pauporté, T. Electrodeposition of NiO films and inverse opal organized layers from polar aprotic solvent-based electrolyte. Electrochim. Acta 2016, 219, 638–646. [Google Scholar]
- Wang, J.; Han, Y. Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. J. Colloid Interface Sci. 2011, 353, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Dong, P.; Liu, L.; Cheng, B. Study on the sedimentation self-assembly of colloidal SiO2 particles under gravitational field. Colloids Surf. A 2005, 253, 169–174. [Google Scholar] [CrossRef]
- Cai, Z.; Teng, J.; Wan, Y.; Zhao, X.S. An improved convective self-assembly method for the fabrication of binary colloidal crystals and inverse structures. J. Colloid Interface Sci. 2012, 380, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Huang, J.; Zeng, Y.; Sun, L.X.; Geng, F.; Liu, H.J.; Wang, F.R.; Jiang, X.D.; Wu, W.D.; Zheng, W.G. Monolayer colloidal crystals by modified air-water interface self-assembly approach. Nanomaterials 2017, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Lotito, V.; Karlušić, M.; Jakšić, M.; Luketić, K.T.; Müller, U.; Zambelli, T.; Fazinić, S. Shape deformation in ion beam irradiated colloidal monolayers: An AFM investigation. Nanomaterials 2020, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; McFarland, M.J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 2004, 126, 13778–13786. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.A.; Gauthier, M.; Sandre, O. Templated synthesis of magnetic nanoparticles through the self-assembly of polymers and surfactants. Nanomaterials 2014, 4, 628–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itasaka, H.; Mimura, K.I.; Kato, K. Extra surfactant-assisted self-assembly of highly ordered monolayers of BaTiO3 nanocubes at the air–water interface. Nanomaterials 2018, 8, 739. [Google Scholar] [CrossRef] [Green Version]
- Shao, T.; Sun, L.; Yang, C.; Ye, X.; Chen, S.; Luo, X. Convenient and efficient fabrication of colloidal crystals based on solidification-induced colloidal assembly. Nanomaterials 2019, 9, 575. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.; Paik, T. Colloidal self-assembly of inorganic nanocrystals into superlattice thin-films and multiscale nanostructures. Nanomaterials 2019, 9, 1243. [Google Scholar] [CrossRef] [Green Version]
- Ebina, A.; Hossain, S.; Horihata, H.; Ozaki, S.; Kato, S.; Kawawaki, T.; Negishi, Y. One-, two-, and three-dimensional self-assembly of atomically precise metal nanoclusters. Nanomaterials 2020, 10, 1105. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Rehman, M.A.U.; Nawaz, Q.; Bastan, F.E.; Sulka, G.D.; Boccaccini, A.R. Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochim. Acta 2019, 307, 465–473. [Google Scholar] [CrossRef]
- Avcu, E.; Faştan, F.E.; Abdullah, H.Z.; Rehman, M.A.U.; Avcu, Y.Y.; Boccaccini, A.R. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Prog. Mater. Sci. 2019, 103, 69–108. [Google Scholar] [CrossRef]
- Heise, S.; Forster, C.; Heer, S.; Qi, H.; Zhou, J.; Virtanen, S.; Lu, T.; Boccaccini, A.R. Electrophoretic deposition of gelatine nanoparticle/chitosan coatings. Electrochim. Acta 2019, 307, 318–325. [Google Scholar] [CrossRef]
- Shehayeb, S.; Deschanels, X.; Lautru, J.; Ghannam, L.; Odorico, M.; Karamé, I.; Toquer, G. Thin polymeric CuO film from EPD designed for low temperature photothermal absorbers. Electrochim. Acta 2019, 305, 295–303. [Google Scholar] [CrossRef]
- Ammam, M.; Fransaer, J. Glucose oxidase and 1-butyl-3-methylimidazolium deposited by AC-electrophoresis on Pt as a glucose bioanode for biofuel cells. Electrochim. Acta 2012, 81, 129–137. [Google Scholar] [CrossRef]
- Lai, C.H.; Yang, Y.L.; Chen, L.Y.; Huang, Y.J.; Chen, J.Y.; Wu, P.W.; Cheng, Y.T.; Huang, Y.T. Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals. J. Electrochem. Soc. 2011, 158, 37–40. [Google Scholar] [CrossRef]
- Hung, P.S.; Liao, C.H.; Chou, Y.S.; Wang, G.R.; Wang, C.J.; Chung, W.A.; Wu, P.W. High throughput fabrication of large-area colloidal crystals via a two-stage electrophoretic deposition method. Electrochim. Acta 2019, 317, 52–60. [Google Scholar] [CrossRef]
- Huang, Y.J.; Lai, C.H.; Wu, P.W. Fabrication of large-area colloidal crystals by electrophoretic deposition in vertical arrangement. Electrochem. Solid-State Lett. 2008, 11, P20–P22. [Google Scholar] [CrossRef]
- Lai, C.H.; Huang, Y.J.; Wu, P.W.; Chen, L.Y. Rapid fabrication of cylindrical colloidal crystals and their inverse opals. J. Electrochem. Soc. 2010, 157, P23–P27. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.R.; Hung, P.S.; Chang, S.Y.; Yang, J.M.; Tseng, Y.C.; Wu, P.W. Conformal electrodeposition of CoNi to improve the mechanical properties of three-dimensional ordered macroporous Ni films. J. Electrochem. Soc. 2020, 167, 022505. [Google Scholar] [CrossRef]
- Hung, P.S.; Chou, Y.S.; Wang, G.R.; Chung, W.A.; Wu, P.W. Fabrication of TiO2-coated nanostructured Ni foams for improved mechanical properties. Ceram. Inter. 2020, 46, 3968–3975. [Google Scholar] [CrossRef]
- Hung, P.S.; Chou, Y.S.; Huang, B.H.; Cheng, I.K.; Wang, G.R.; Chung, W.A.; Pan, F.M.; Wu, P.W. A vertically integrated ZnO-based hydrogen sensor with hierarchical bi-layered inverse opals. Sens. Actuator B Chem. 2020, 325, 128779. [Google Scholar] [CrossRef]
- Wang, G.R.; Hung, P.S.; Chung, W.A.; Chiang, T.T.; Wu, P.W. Green synthesis of Ni@PEDOT/Au composite Inverse opals for simultaneous detection of ascorbic acid, dopamine, and uric acid. Nanomaterials 2020, 10, 1722. [Google Scholar] [CrossRef]
- Liao, C.H.; Hsieh, Y.C.; Huang, B.H.; Pai, C.H.; Wu, P.W. Free-standing Au inverse opals for enhanced glucose sensing. J. Alloys Compd. 2016, 684, 453–460. [Google Scholar] [CrossRef]
- Liao, C.H.; Hung, P.S.; Wu, C.Y.; Chen, H.Y.; Wu, P.W. A combined electrochemical route to fabricate large-area and free-standing inverse opaline film. Electrochem. Commun. 2016, 68, 32–35. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Huang, Y.J.; Lai, C.H.; Wu, P.W.; Chen, L.Y. A facile approach to fabricate Ni inverse opals at controlled thickness. Mater. Lett. 2009, 63, 2393–2395. [Google Scholar] [CrossRef]
- Onal, E.; Frith, J.E.; Jurg, M.; Wu, X.; Molotnikov, A. Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds. Metals 2018, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Lichtner, A.; Roussel, D.; Jauffrès, D.; Martin, C.L.; Bordia, R.K. Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. J. Am. Ceram. Soc. 2016, 99, 979–987. [Google Scholar] [CrossRef]
- Cheng, I.C.; Hodge, A.M. Strength scale behavior of nanoporous Ag, Pd and Cu foams. Scr. Mater. 2013, 69, 295–298. [Google Scholar] [CrossRef]
- Joslin, D.L.; Oliver, W.C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 1990, 5, 123–126. [Google Scholar] [CrossRef]
PS Microspheres ID | St (g) | NaSS (mg) | KHCO3 (mg) | Average Size (Mean ± Std. Dev., nm) |
---|---|---|---|---|
300 nm | 160 | 500 | 200 | 315 ± 12 |
600 nm | 160 | 10 | 200 | 620 ± 16 |
1000 nm | 160 | 0.5 | 200 | 1025 ± 23 |
PS Microspheres ID | wt % | pH | Zeta Potential (Mean ± Std. Dev, mV) | E-Field (V cm−1) | EPD Time (min) |
---|---|---|---|---|---|
300 nm | 0.8 | 9 | −71.2 ± 2.2 | 6 | 10 |
600 nm | 0.8 | 7.5 | −63.6 ± 0.8 | 7 | 10 |
1000 nm | 1 | 7 | −53.5 ± 1.4 | 10 | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, P.-S.; Liao, C.-H.; Huang, B.-H.; Chung, W.-A.; Chang, S.-Y.; Wu, P.-W. Formation of Free-Standing Inverse Opals with Gradient Pores. Nanomaterials 2020, 10, 1923. https://doi.org/10.3390/nano10101923
Hung P-S, Liao C-H, Huang B-H, Chung W-A, Chang S-Y, Wu P-W. Formation of Free-Standing Inverse Opals with Gradient Pores. Nanomaterials. 2020; 10(10):1923. https://doi.org/10.3390/nano10101923
Chicago/Turabian StyleHung, Pei-Sung, Chen-Hong Liao, Bo-Han Huang, Wei-An Chung, Shou-Yi Chang, and Pu-Wei Wu. 2020. "Formation of Free-Standing Inverse Opals with Gradient Pores" Nanomaterials 10, no. 10: 1923. https://doi.org/10.3390/nano10101923
APA StyleHung, P.-S., Liao, C.-H., Huang, B.-H., Chung, W.-A., Chang, S.-Y., & Wu, P.-W. (2020). Formation of Free-Standing Inverse Opals with Gradient Pores. Nanomaterials, 10(10), 1923. https://doi.org/10.3390/nano10101923