Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers
Abstract
:1. Introduction
2. Preparation and Characteristics of the TiS2 Material
3. Experimental Setup
4. Results and Discussion
4.1. Mode-Locked Operation
4.2. Q-Switched Operation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hallmann, S.; Glockner, P.; Daniel, C.; Seyda, V.; Emmelmann, C. Manufacturing of Medical Implants by Combination of Selective Laser Melting and Laser Ablation. Lasers Manuf. Mater. Process. 2015, 2, 124–134. [Google Scholar] [CrossRef]
- Skórczakowski, M.; Swiderski, J.; Pichola, W.; Nyga, P.; Zajac, A.; Maciejewska, M.; Galecki, L.; Kasprzak, J.; Gross, S.; Heinrich, A.; et al. Mid-infrared Q-switched Er:YAG laser for medical applications. Laser Phys. Lett. 2010, 7, 498–504. [Google Scholar] [CrossRef]
- Chraplyvy, A. Limitations on lightwave communications imposed by optical-fiber nonlinearities. J. Light. Technol. 1990, 8, 1548–1557. [Google Scholar] [CrossRef]
- Adachi, S.; Koyamada, Y. Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR. J. Light. Technol. 2002, 20, 1506–1511. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light. Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.M.; Troughton, M.; Chen, J.; Elder, I.; Thomson, R.R.; Esser, M.J.D.; Lamb, R.A.; Hand, D. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy. Appl. Opt. 2017, 56, 4873. [Google Scholar] [CrossRef]
- Fu, S.; Li, J.; Zhang, S.; Bai, Z.; Wu, T.; Man, Z. Large-energy mode-locked Er-doped fiber laser based on indium selenide as a modulator. Opt. Mater. Express 2019, 9, 2662–2671. [Google Scholar] [CrossRef]
- Xu, N.; Ming, N.; Han, X.; Man, B.; Zhang, H. Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber. Opt. Mater. Express 2019, 9, 373–383. [Google Scholar] [CrossRef]
- Xu, N.; Yang, W.; Zhang, H. Nonlinear saturable absorption properties of indium selenide and its application for demonstrating a Yb-doped mode-locked fiber laser. Opt. Mater. Express 2018, 8, 3092–3103. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 11 μm region. Opt. Lett. 2016, 41, 1150. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Guo, L.; Gao, J.; Jiang, S.; Han, X.; Guo, Q.; Chen, X.; Li, D.; Zhang, H. 170 mW-level mode-locked Er-doped fiber laser oscillator based on nonlinear polarization rotation. Appl. Phys. B 2019, 125, 193. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, M.; Ren, Y.; Liu, F.; Chen, X.; Yang, J.; Yan, X.-Q.; Song, F.; Tian, J. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res. 2018, 6, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Pan, J.; Liu, Y.J.; Si, H.; Lu, Z.; Han, X.; Gao, J.; Zuo, Z.; Zhang, H.; Jiang, S. Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber. Opt. Express 2019, 27, 24670–24681. [Google Scholar] [CrossRef]
- Guo, L.; Shang, X.; Zhao, R.; Zhang, H.; Li, D.; Xinxin, S.; Huanian, Z.; Dengwang, L. Nonlinear optical properties of ferromagnetic insulator Cr2Ge2Te6 and its application for demonstrating pulsed fiber laser. Appl. Phys. Express 2019, 12, 082006. [Google Scholar] [CrossRef]
- Ma, P.; Lin, W.; Zhang, H.-N.; Xu, S.-H.; Yang, Z. Nonlinear Absorption Properties of Cr2Ge2Te6 and Its Application as an Ultra-Fast Optical Modulator. Nanomaterials 2019, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhang, X.; Liu, Z.; Li, P.; Li, M.; Cong, Z.; Qin, Z.; Chen, X. High-order harmonic mode-locked Yb-doped fiber laser based on a SnSe2 saturable absorber. Opt. Laser Technol. 2019, 119, 105639. [Google Scholar] [CrossRef]
- Liu, W.; Pang, L.; Han, H.; Shen, Z.; Lei, M.; Teng, H.; Wei, Z. Dark solitons in WS2 erbium-doped fiber lasers. Photon. Res. 2016, 4, 111. [Google Scholar] [CrossRef]
- Luo, Z.-C.; Luo, A.; Xu, W.-C. Tunable and Switchable Multiwavelength Passively Mode-Locked Fiber Laser Based on SESAM and Inline Birefringence Comb Filter. IEEE Photon. J. 2010, 3, 64–70. [Google Scholar] [CrossRef]
- Yang, W.; Hou, J.; Zhang, B.; Song, R.; Liu, Z. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm. Appl. Opt. 2012, 51, 5664–5667. [Google Scholar] [CrossRef]
- Yan, P.; Liu, A.; Chen, Y.; Chen, H.; Ruan, S.; Guo, C.; Chen, S.; Li, I.L.; Yang, H.; Hu, J.; et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express 2015, 5, 479. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, C.; Lu, S.; Chen, Y.; Li, Y.; Zhang, H.; Wen, S. Microwave and optical saturable absorption in graphene. Opt. Express 2012, 20, 23201–23214. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zeng, X.C. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1289–1293. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, S.; Yang, Q.-H.; Wang, P. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett. 2011, 36, 4008–4010. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Xu, N.; Ma, P.; Fu, S.; Shang, X.; Jiang, S.; Wang, S.; Li, D.; Zhang, H. Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, P.; Zhu, M.; Zhang, W.; Wang, G.; Fu, S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020. [Google Scholar] [CrossRef] [Green Version]
- Ming, N.; Tao, S.; Yang, W.; Chen, Q.; Sun, R.; Wang, C.; Wang, S.; Man, B.; Zhang, H. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt. Express 2018, 26, 9017–9026. [Google Scholar] [CrossRef]
- Zhang, H. Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber. Opt. Mater. Express 2017, 7, 3934. [Google Scholar] [CrossRef]
- Ma, P.; Li, J.; Zhang, H.; Yang, Z. Preparation of high-damage threshold WS2 modulator and its application for generating high-power large-energy bright-dark solitons. Infrared Phys. Technol. 2020, 105, 103257. [Google Scholar] [CrossRef]
- Man, Z.S.; Meng, P.W.; Fu, S.G. Creation of complex nano-interferometric field strutures. Opt. Lett. 2020, 45, 37–40. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Zhao, Q.; Liu, W.; Su, Y. VSe2 nanosheets for ultrafast fiber lasers. J. Mater. Chem. C 2020, 8, 1104–1109. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Zhao, Q.; Wang, Y.; Liu, W. Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. Nanoscale 2020, 12, 4537–4543. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, P.; Li, X.; Jin, Z. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon 2019, 149, 336–341. [Google Scholar] [CrossRef]
- Liu, J.S.; Li, X.H.; Guo, Y.X.; Qyyum, A.; Shi, Z.J.; Feng, T.C.; Zhang, Y.; Jiang, C.X.; Liu, X.F. SnSe2 nanosheets for femtosecond harmonic mode-locked pulse generation. Small 2019, 15, 1902811. [Google Scholar] [CrossRef]
- Liu, W.; Liu, M.; Liu, X.; Lei, M.; Wei, Z. SnSSe as a saturable absorber for an ultrafast laser with superior stability. Opt. Lett. 2020, 45, 419. [Google Scholar] [CrossRef]
- Liu, W.; Liu, M.; Liu, X.; Wang, X.; Teng, H.; Lei, M.; Wei, Z.; Wei, Z. Saturable absorption properties and femtosecond mode-locking application of titanium trisulfide. Appl. Phys. Lett. 2020, 116, 061901. [Google Scholar] [CrossRef]
- Zhao, G.; Xuan, J.; Gong, Q.; Wang, L.; Ren, J.; Sun, M.; Jia, F.; Yin, G.; Liu, B. In Situ Growing Double-Layer TiO2 Nanorod Arrays on New-Type FTO Electrodes for Low-Concentration NH3 Detection at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 8573–8582. [Google Scholar] [CrossRef]
- Guo, B. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett. 2018, 16, 020004. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.; Wang, S.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photon. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Niu, K.; Sun, R.; Chen, Q.; Man, B.; Zhang, H. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photon. Res. 2018, 6, 72–76. [Google Scholar] [CrossRef]
- Guo, B.; Yao, Y.; Yan, P.-G.; Xu, K.; Liu, J.-J.; Wang, S.-G.; Li, Y. Dual-Wavelength Soliton Mode-Locked Fiber Laser with a WS2-Based Fiber Taper. IEEE Photon. Technol. Lett. 2015, 28, 323–326. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, S.; Zhang, M.; Chen, L.; Wu, Q.; Zhao, J.; Jiang, Q.; Zheng, Z.; Zhang, H. TiS2-based saturable absorber for ultrafast fiber lasers. Photon. Res. 2018, 6, C44–C48. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, C.; Wu, J.; Varma, S.J.; Nakanishi, Y.; Aliyan, A.; Martí, A.A.; Wang, Y.; Xie, B.; Kumar, J.; et al. Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Mater. Today 2019, 22, 17–24. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.-H.; Chitara, B.; Goldberger, J.E. Li Intercalation into 1D TiS2(en) Chains. J. Am. Chem. Soc. 2014, 136, 2986–2989. [Google Scholar] [CrossRef]
- Varma, S.J.; Kumar, J.; Liu, Y.; Layne, K.; Wu, J.; Liang, C.; Nakanishi, Y.; Aliyan, A.; Yang, W.; Ajayan, P.M.; et al. 2D TiS2 Layers: A Superior Nonlinear Optical Limiting Material. Adv. Opt. Mater. 2017, 5, 1700713. [Google Scholar] [CrossRef]
- Ge, Y.; Zhu, Z.; Xu, Y.; Chen, Y.; Chen, S.; Liang, Z.; Song, Y.; Zou, Y.; Zeng, H.; Xu, S.; et al. Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices. Adv. Opt. Mater. 2017, 6, 1701166. [Google Scholar] [CrossRef]
- Tian, X.; Wei, R.; Liu, M.; Zhu, C.; Luo, Z.; Wang, F.; Qiu, J. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale 2018, 10, 9608–9615. [Google Scholar] [CrossRef]
- Sandoval, S.J.; Chen, X.K.; Irwin, J.C. Raman spectra ofAgxTiS2 and lattice dynamics of TiS2. Phys. Rev. B 1992, 45, 14347–14353. [Google Scholar] [CrossRef]
- Suri, D.; Siva, V.; Joshi, S.; Senapati, K.; Sahoo, P.K.; Varma, S.; Patel, R.S. A study of electron and thermal transport in layered titanium disulphide single crystals. J. Phys. Condens. Matter 2017, 29, 485708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tan, P.-H.; Wu, J.-B.; Shi, W.; Tan, P.-H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, B.; Lyu, Q.; Yao, Y.; Wang, P. Direct generation of dip-type sidebands from WS2 mode-locked fiber laser. Opt. Mater. Express 2016, 6, 2475. [Google Scholar] [CrossRef] [Green Version]
- Degnan, J. Optimization of passively Q-switched lasers. IEEE J. Quantum Electron. 1995, 31, 1890–1901. [Google Scholar] [CrossRef]
- Herda, R.; Kivistö, S.; Okhotnikov, O.G. Dynamic gain induced pulse shortening in Q-switched lasers. Opt. Lett. 2008, 33, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- Zayhowski, J.J.; Kelley, P.L. Optimization of Q-switched lasers. IEEE J. Quantum Electron. 1991, 27, 2220–2225. [Google Scholar] [CrossRef]
Pulse Type | SA Fabrication | αs (%) | Isat (MW/cm2) | Wavelength (nm) | Pulse Duration | Fundamental Frequency (MHz) | Pulse Energy | Output Power (mW) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Mode-locked | optically deposition | 8.3 | - | 1563.3 | 812 fs | 22.7 | 25.3 pJ | 0.574 | [44] |
Q-switched | 1560.2 | 4 µs | 25.2 to 50.7 kHz | 9.5 nJ | 0.48 | ||||
Mode-locked | sandwich structure | 13.19 | 17.97 | 1531.69 | 2.36 ps | 3.43 | 0.05 nJ | 0.177 | Our work |
Q-switched | 1556 | 2.34 µs | 13.17 to 48.45 kHz | 67.24 nJ | 3.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Guo, L.; Zhang, H.; Li, D.; Yue, Q. Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials 2020, 10, 1922. https://doi.org/10.3390/nano10101922
Shang X, Guo L, Zhang H, Li D, Yue Q. Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials. 2020; 10(10):1922. https://doi.org/10.3390/nano10101922
Chicago/Turabian StyleShang, Xinxin, Linguang Guo, Huanian Zhang, Dengwang Li, and Qingyang Yue. 2020. "Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers" Nanomaterials 10, no. 10: 1922. https://doi.org/10.3390/nano10101922
APA StyleShang, X., Guo, L., Zhang, H., Li, D., & Yue, Q. (2020). Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. Nanomaterials, 10(10), 1922. https://doi.org/10.3390/nano10101922