Conversion and Tack-Curing of Light-Cured Veneer Luting Agents
Abstract
1. Introduction
2. Materials and Methods
2.1. Degree of Conversion Under the Ceramic Veneers
2.2. Degree of Conversion in the Presence of Touch-Cure Activators
2.3. Effect of Tack-Curing on Setting Characteristics
2.4. Statistical Analysis
3. Results
3.1. Degree of Conversion Under the Ceramic Veneers
3.2. Degree of Conversion in the Presence of Touch-Cure Activators
3.3. Effect of Tack-Curing on Setting Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peumans, M.; Van Meerbeek, B.; Lambrechts, P.; Vanherle, G. Porcelain veneers: A review of the literature. J. Dent. 2000, 28, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Spitznagel, F.A.; Zembic, A.; Prott, L.S.; Pieralli, S.; Bongaerts, B.; Metzendorf, M.-I.; Langner, R.; Gierthmuehlen, P.C. Survival and complication rates of feldspathic, leucite-reinforced, lithium disilicate and zirconia ceramic laminate veneers: A systematic review and meta-analysis. J. Esthet. Restor. Dent. 2025, 37, 601–619. [Google Scholar] [CrossRef]
- Assaf, A.; Azer, S.S.; Sfeir, A.; Al-Haj Husain, N.; Özcan, M. Risk factors with porcelain laminate veneers experienced during cementation: A review. Materials 2023, 16, 4932. [Google Scholar] [CrossRef]
- Souza, I.V.; Finck, N.S.; Rodrigues, C.S.; Moraes, R.R. Laboratory processing methods and bonding to glass ceramics: Systematic review. Int. J. Adhes. Adhes. 2024, 129, 103572. [Google Scholar] [CrossRef]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Komine, F.; Furuchi, M.; Honda, J.; Kubochi, K.; Takata, H. Clinical performance of laminate veneers: A review of the literature. J. Prosthodont. Res. 2024, 68, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.H.; Lopez, A.; Berzins, D.W.; Prasad, S.; Ahn, K.W. Effect of different thicknesses of pressable ceramic veneers on polymerization of light-cured and dual-cured resin cements. J. Contemp. Dent. Pract. 2015, 16, 347–352. [Google Scholar] [CrossRef]
- David-Pérez, M.; Ramírez-Suárez, J.P.; Latorre-Correa, F.; Agudelo-Suárez, A.A. Degree of conversion of resin-cements (light-cured/dual-cured) under different thicknesses of vitreous ceramics: Systematic review. J. Prosthodont. Res. 2022, 66, 385–394. [Google Scholar] [CrossRef]
- Kilinc, E.; Antonson, S.A.; Hardigan, P.C.; Kesercioglu, A. The effect of ceramic restoration shade and thickness on the polymerization of light- and dual-cure resin cements. Oper. Dent. 2011, 36, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Pissaia, J.F.; Guanaes, B.K.A.; Kintopp, C.C.A.; Correr, G.M.; da Cunha, L.F.; Gonzaga, C.C. Color stability of ceramic veneers as a function of resin cement curing mode and shade: 3-year follow-up. PLoS ONE 2019, 14, e0219183. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Hernández-Escamilla, T.; Piva, E.; Devoto, W.; Lukomska-Szymanska, M.; Cuevas-Suárez, C.E. Color stability of dual-cured and light-cured resin cements: A systematic review and meta-analysis of in vitro studies. J. Prosthodont. 2024, 33, 212–220. [Google Scholar] [CrossRef]
- Asmussen, S.; Arenas, G.; Cook, W.D.; Vallo, C. Photobleaching of camphorquinone during polymerization of dimethacrylate-based resins. Dent. Mater. 2009, 25, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.D.; Mishriky, M.; Barghi, N.; Rawls, H.R.; Cardenas, H.L.; Aguirre, R.; Whang, K. Development of a low-color, color stable, dual cure dental resin. Dent. Mater. 2013, 29, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Lamparth, I.; Fässler, P.; Schnur, T.; Thetiot, E.; Lalevée, J.; Catel, Y. Polymerizable thioureas as innovative reducing agents for self-cured and dual-cured dental materials. Dent. Mater. 2022, 38, 1108–1116. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Paolone, G.; Sabbagh, J.; Scotti, N.; Vichi, A. Color stability of resin cements after water aging. Polymers 2023, 15, 655. [Google Scholar] [CrossRef]
- Arikawa, H.; Takahashi, H.; Kanie, T.; Ban, S. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent. Mater. J. 2009, 28, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Fidalgo-Pereira, R.; Torres, O.; Carvalho, O.; Henriques, B.; Özcan, M.; Souza, J.C.M. The impact of inorganic fillers, organic content, and polymerization mode on the degree of conversion of monomers in resin-matrix cements for restorative dentistry: A scoping review. Clin. Oral Investig. 2024, 28, 454. [Google Scholar] [CrossRef]
- Fujita, K.; Nishiyama, N.; Nemoto, K.; Okada, T.; Ikemi, T. Effect of base monomer’s refractive index on curing depth and polymerization conversion of photo-cured resin composites. Dent. Mater. J. 2005, 24, 403–408. [Google Scholar] [CrossRef]
- Chen, M.H. Update on dental nanocomposites. J. Dent. Res. 2010, 89, 549–560. [Google Scholar] [CrossRef]
- De Souza, G.; Braga, R.R.; Cesar, P.F.; Lopes, G.C. Correlation between clinical performance and degree of conversion of resin cements: A literature review. J. Appl. Oral Sci. 2015, 23, 358–368. [Google Scholar] [CrossRef]
- Braga, R.R.; Ferracane, J.L.; Condon, J.R. Polymerization contraction stress in dual-cure cements and its effect on interfacial integrity of bonded inlays. J. Dent. 2002, 30, 333–340. [Google Scholar] [CrossRef]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of curing modes on conversion and shrinkage of dual-cure resin-cements. Dent. Mater. 2022, 38, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Rosenstiel, S.F.; Land, M.F.; Fujimoto, J. Luting agents and cementation procedures. In Contemporary Fixed Prosthodontics, 5th ed.; Elsevier: St. Louis, MO, USA, 2016; pp. 774–791. [Google Scholar]
- Stegall, D.; Tantbirojn, D.; Perdigão, J.; Versluis, A. Does tack curing luting cements affect the final cure? J. Adhes. Dent. 2017, 19, 239–243. [Google Scholar]
- Gaile, M.; Papia, E.; Zalite, V.; Locs, J.; Soboleva, U. Resin cement residue removal techniques: In vitro analysis of marginal defects and discoloration intensity using micro-CT and stereomicroscopy. Dent. J. 2022, 10, 55. [Google Scholar] [CrossRef]
- Es Sebar, L.; Baldi, A.; Comba, A.; Sannino, I.; Iannucci, L.; Grassini, S.; Shokuhfar, T.; Scotti, N. Could tack-curing influence margin continuity and conversion degree of a universal dual-curing cement? Materials 2025, 18, 2920. [Google Scholar] [CrossRef] [PubMed]
- Price, R.B.; Christensen, G.J.; Braga, S.S.L. Light-emitting diode polymerization lights: Attributes and uses. J. Cosmet. Dent. 2020, 36, 66–77. [Google Scholar]
- Mazão, J.D.; Braga, S.; Brangança, G.; Zancopé, K.; Price, R.B.; Soares, C.J. Effect of ceramic thickness on light attenuation, degree of conversion, Knoop hardness, and elastic modulus of four luting resins. Oper. Dent. 2023, 48, 226–235. [Google Scholar] [CrossRef]
- Truffier-Boutry, D.; Demoustier-Champagne, S.; Devaux, J.; Biebuyck, J.J.; Mestdagh, M.; Larbanois, P.; Leloup, G. A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent. Mater. 2006, 22, 405–412. [Google Scholar] [CrossRef]
- Scotti, N.; Venturello, A.; Borga, F.A.; Pasqualini, D.; Paolino, D.S.; Geobaldo, F.; Berutti, E. Post-curing conversion kinetics as functions of the irradiation time and increment thickness. J. Appl. Oral Sci. 2013, 21, 190–195. [Google Scholar] [CrossRef]
- Fonseca, A.S.; Labruna Moreira, A.D.; de Albuquerque, P.P.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar] [CrossRef]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Wang, K.; Li, B.; Ni, K.; Wang, Z. Optimal photoinitiator concentration for light-cured dental resins. Polym. Test. 2021, 94, 107039. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Owais, M.M.; Amer, A.H.B.; Almutairi, K.B. Color stability and degree of conversion of a novel dibenzoyl germanium derivative containing photo-polymerized resin luting cement. J. Appl. Biomater. Funct. Mater. 2020, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.M. Structure–property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dent. Mater. 2009, 25, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Neto, V.G.; Nobre, C.F.A.; Paula, D.M.; Souza, L.C.; Silva, J.C.; Moreira, M.M.; Picanço, P.R.B.; Feitosa, V.P. Glycerol-dimethacrylate as alternative hydrophilic monomer for HEMA replacement in simplified adhesives. J. Mech. Behav. Biomed. Mater. 2018, 18, 95–101. [Google Scholar] [CrossRef]
- Davy, K.W.M.; Braden, M. Study on polymeric systems based on 2,2 bis-4(2 hydroxy-3-methacryloyloxypropoxy) phenyl propane. Biomaterials 1991, 12, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Esstech.X-733-000, DDDMA. Available online: https://catalog.esstechinc.com/viewitems/monomers/multifunctional-monomers (accessed on 7 December 2024).
- Dantagnan, C.A.; Babajko, S.; Nassif, A.; Houari, S.; Jedeon, K.; Francois, P.; Dursun, E.; Attal, J.-P.; Bosco, J. Analysis of resin-based dental materials’ composition depending on their clinical applications. Polymers 2024, 16, 1022. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.; Rahiotis, C.; Eliades, G. Molecular characterization of one-step self-etching adhesives placed on dentin and inert substrate. J. Adhes. Dent. 2008, 10, 83–93. [Google Scholar]
- Suh, B.I.; Feng, L.; Pashley, D.H.; Tay, F.R. Factors contributing to the incompatibility between simplified-step adhesives and chemically-cured or dual-cured composites. Part III. Effect of acidic resin monomers. J. Adhes. Dent. 2003, 5, 267–282. [Google Scholar]
- Kadowaki, Y.; Kakuda, S.; Kawano, S.; Katsumata, A.; Ting, S.; Hoshika, S.; Ikeda, T.; Tanaka, T.; Carvalho, R.M.; Sano, H. Bond performance of “Touch and Cure” adhesives on resin core systems. Dent. Mater. J. 2016, 35, 386–391. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Petropoulou, A.; Zinelis, S.; Eliades, G. Degree of conversion of dual-cured composite luting agents: The effect of transition metal-based touch-cure activators. J. Dent. 2024, 147, 105147. [Google Scholar] [CrossRef]
- Hasegawa, M.; Tichy, A.; Hosaka, K.; Kuno, Y.; Ikeda, M.; Nozaki, K.; Chiba, A.; Nakajima, M.; Tagami, J. Degree of conversion and dentin bond strength of light-cured multi-mode adhesives pretreated or mixed with sulfinate agents. Dent. Mater. J. 2021, 40, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, M.; Petropoulou, A.; Masouras, K.; Zafiropoulou, M.; Zinelis, S.; Eliades, G. The effect of touch-cure polymerization on the conversion and hardness of core build-up resin composites: A laboratory study. Materials 2021, 14, 6025. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, J.; Szillat, F.; Bouzrati-Zerelli, M.; Becht, J.M.; Klee, J.E.; Lalevée, J. Sulfinates and sulfonates as high performance co-initiators in CQ-based systems: Towards aromatic amine-free systems for dental restorative materials. Dent. Mater. 2020, 36, 187–196. [Google Scholar] [CrossRef]
- Turner, G.P.A. Introduction to Paint Chemistry and Principles of Paint Technology, 3rd ed.; Springer: New York, NY, USA, 1988. [Google Scholar]
- D’Alessandro, C.; Baena, E.; Josic, U.; Maravic, T.; Mancuso, E.; Ceballos, L.; Mazzoni, A.; Blatz, M.B.; Breschi, L.; Mazzitelli, C. Tack-cure vs. conventional polymerization methods: A systematic review on resin composite cements’ properties. J. Dent. 2025, 160, 105917. [Google Scholar] [CrossRef]
- Kim, Y.S.; Choi, S.H.; Lee, B.N.; Hwang, Y.C.; Hwang, I.N.; Oh, W.M.; Ferracane, J.L.; Chang, H.S. Effect of tack cure on polymerization shrinkage of resin-based luting cements. Oper. Dent. 2020, 45, E196–E206. [Google Scholar] [CrossRef]
- Otani, A.C.; Pattussi, M.P.; Spohr, A.M.; Grossi, M.L. Evaluation of the ceramic laminate veneer-tooth interface after different resin cement excess removal techniques. Clin. Oral Investig. 2024, 28, 136. [Google Scholar] [CrossRef]
- Abu-elenain, D.A.; Lewis, S.H.; Stansbury, J.W. Property evolution during vitrification of dimethacrylate photopolymer networks. Dent. Mater. 2013, 29, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
Materials | Composition * | Manufacturer |
---|---|---|
Choice 2 (CH2) | UDMA, BisGMA, TEGDMA, THFMA, catalysts, BaAlBSiO4-glass, YbF3, SiO2 (filler: 50–75%wt) | Bisco, Schaumburg, IL, USA |
G-Cem Veneer (GCV) | UDMA, NPGDMA, BisEMA, TCDDMDMA, TEGDMA, methylated melamine-formaldehyde polymer, catalysts, pigments (filler: 69%wt) | GC Int., Tokyo, Japan |
Panavia Veneer LC (PNV) | UDMA, TEGDMA, hydrophilic aliphatic dimethacrylate, hydrophilic amide monomer, catalysts, pigments YbF3, silanated spherical SiO2 (filler: 66%wt, 47%vol, size 0.05–8 μm) | Kuraray Noritake, Okuyama, Japan |
Permashade LC Veneer (PMS) | BisGMA, TEGDMA, catalysts, pigments (filler: 66.5%wt) | Ultradent Int. S. Jordan, UT, USA |
Variolink Esthetic LC (VEV) | UDMA, DDDMA, GDMA, catalysts, pigments, spheroid mixed oxide, YbF3 (filler: 38%vol, size 0.04–0.2 μm, mean 0.1 μm) | Ivoclar Vivadent Schaan, Lichtenstein |
Materials | |||||
---|---|---|---|---|---|
Groups | CH2 | GCV | PNV | PMS | VEV |
C1 | 64.6 (2.3) a, A | 58.5 (2.0) a, B | 56.7 (1.5) a, B | 57.9 (0.9) a, B | 66.7 (1.7) a, A |
R1 | 71.7 (2.4) b, A | 65.5 (2.1) b, B | 64.1 (2.7) b, B, C | 61.7 (1.6) b, C | 76.1 (3.7) b, D |
Materials | |||
---|---|---|---|
Groups | GCV | PNV | VEV |
C1 | 58.5 (2.0) a, B | 56.7 (1.5) a, B | 66.7 (1.7) a, A |
R1 | 65.5 (2.1) b, B | 64.1 (2.7) b, B, C | 76.1 (3.7) b, D |
Materials | |||||
---|---|---|---|---|---|
Groups | CH2 | GCV | PNV | PMS | VEV |
DC% | |||||
TCC | 55.6 (1.2) a, A | 40.8 (1.1) a, B | 23.8 (2.0) a, C | 39.0 (0.9) a, B | 52.7 (2.5) a, A |
TCD | 26.1 (1.2) b, A | 3.1 (0.2) b, B | 0 b, B | 4.1 (0.5) b, C, B | 3.8 (0.6) b, B |
R1 | 71.7 (2.4) c, A | 65.5 (2.1) c, B | 64.1 (2.7) c, B, C | 61.7 (1.6) c, C | 76.1 (3.7) c, D |
VHN | |||||
TCC | 16.9 (1.3) a | 23.7 (2) a | 10 (0.6) a | 27.5 (1.5) a | 16.9 (1.3) a |
TCD | NA | NA | NA | NA | NA |
R3 | 54.3 (2.9) b, A | 45.9 (5.8) b, A | 20.4 (1.1) b, B | 50.6 (4.5) b, A | 29.6 (1.1) b, C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulou, A.; Dimitriadi, M.; Zinelis, S.; Papathanasiou, I.; Eliades, G. Conversion and Tack-Curing of Light-Cured Veneer Luting Agents. J. Funct. Biomater. 2025, 16, 307. https://doi.org/10.3390/jfb16090307
Petropoulou A, Dimitriadi M, Zinelis S, Papathanasiou I, Eliades G. Conversion and Tack-Curing of Light-Cured Veneer Luting Agents. Journal of Functional Biomaterials. 2025; 16(9):307. https://doi.org/10.3390/jfb16090307
Chicago/Turabian StylePetropoulou, Aikaterini, Maria Dimitriadi, Spiros Zinelis, Ioannis Papathanasiou, and George Eliades. 2025. "Conversion and Tack-Curing of Light-Cured Veneer Luting Agents" Journal of Functional Biomaterials 16, no. 9: 307. https://doi.org/10.3390/jfb16090307
APA StylePetropoulou, A., Dimitriadi, M., Zinelis, S., Papathanasiou, I., & Eliades, G. (2025). Conversion and Tack-Curing of Light-Cured Veneer Luting Agents. Journal of Functional Biomaterials, 16(9), 307. https://doi.org/10.3390/jfb16090307