Do Clear Aligners Release Toxic Chemicals?—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Sources of Information
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Methodological Quality Analysis
3. Results and Discussion
4. Discussion
4.1. Biocompatibility and Toxicity of Clear Aligners
4.2. Effects of Aligners on Oral Health
4.3. Preventive Measures and Alternative Materials
4.4. Clinical Implications and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dinu, S.; Daniel, O.N.; Matichescu, A.; Nicoleta, Z.I.; Szuhanek, C.; Geamantan, A.; Buzatu, R. In Vitro Biocompatibility and in ovo Irritant Potencial Screening of Two Clear Aligners with Orthodontic Applications. Farmacia 2024, 72, 513–520. [Google Scholar] [CrossRef]
- Al Naqbi, S.R.; Pratsinis, H.; Kletsas, D.; Eliades, T.; Athanasiou, A.E. In vitro assessment of cytotoxicity and estrogenicity of Vivera® retainers. J. Contemp. Dent. Pract. 2018, 19, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Cenzato, N.; Di Iasio, G.; Martìn Carreras-Presas, C.; Caprioglio, A.; Del Fabbro, M. Materials for Clear Aligners—A Comprehensive Exploration of Characteristics and Innovations: A Scoping Review. Appl. Sci. 2024, 14, 6533. [Google Scholar] [CrossRef]
- Bichu, Y.M.; Alwafi, A.; Liu, X.; Andrews, J.; Ludwig, B.; Bichu, A.Y.; Zou, B. Advances in orthodontic clear aligner materials. Bioact. Mater. 2023, 22, 384–403. [Google Scholar] [CrossRef]
- Fatima, F.; Taha Mahmood, H.; Fida, M.; Hoshang Sukhia, R. Effectiveness of antimicrobial gels on gingivitis during fixed orthodontic treatment: A systematic review and meta-analysis. Int. Orthod. 2020, 18, 10–21. [Google Scholar] [CrossRef]
- Behnke, R.; Stahl, F.; Duske, K.; Warkentin, M.; Schwartz, M.; Hinz, B.; Walther, U. Influence of Test Specimen Geometry and Water Soaking on the In Vitro Cytotoxicity of Orthocryl®, Orthocryl® LC, Loctite® EA 9483 and Polypropylene. Molecules 2022, 27, 3949. [Google Scholar] [CrossRef]
- Martina, S.; Rongo, R.; Bucci, R.; Razionale, A.V.; Valletta, R.; D’Antò, V. In vitro cytotoxicity of different thermoplastic materials for clear aligners. Angle Orthod. 2019, 89, 942–945. [Google Scholar] [CrossRef]
- Panayi, N.C.; Efstathiou, S.; Christopoulou, I.; Kotantoula, G.; Tsolakis, I.A. Digital orthodontics: Present and future. AJO-DO Clin. Companion 2024, 4, 14–25. [Google Scholar] [CrossRef]
- Miller, K.B.; McGorray, S.P.; Womack, R.; Quintero, J.C.; Perelmuter, M.; Gibson, J.; Dolan, T.A.; Wheeler, T.T. A comparison of treatment impacts between Invisalign aligner and fixed appliance therapy during the first week of treatment. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 302.e1–302.e9. [Google Scholar] [CrossRef]
- Charalampakis, O.; Iliadi, A.; Ueno, H.; Oliver, D.R.; Kim, K.B. Accuracy of clear aligners: A retrospective study of patients who needed refinement. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 47–54. [Google Scholar] [CrossRef]
- Ho CTe Huang, Y.T.; Chao, C.W.; Huang, T.H.; Kao, C.T. Effects of different aligner materials and attachments on orthodontic behavior. J. Dent. Sci. 2021, 16, 1001–1009. [Google Scholar] [CrossRef]
- Dinu, S.; Craciunescu, E.L.; Macasoi, I.; Chioran, D.; Rivis, M.; Vlad, D.; Milutinovici, R.A.; Marcovici, I.; Dolghi, A.; Moaca, A.; et al. Toxicological Assessment of an Acrylic Removable Orthodontic Appliance Using 2D and 3D In Vitro Methods. Materials 2022, 15, 1193. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Ishikawa, K.; Sugiyama, K.; Furuta, H.; Nishimura, F. Content and Release of Bisphenol A from Polycarbonate Dental Products. Dent. Mater. J. 2000, 19, 389–395. [Google Scholar] [CrossRef]
- Katras, S.; Ma, D.; Dayeh Aal Tipton, D. Bisphenol A Release from Orthodontic Clear Aligners: An In-Vitro Study. Recent Prog. Mater. 2021, 3, 1. [Google Scholar] [CrossRef]
- Ryokawa, H.; Miyazaki, Y.; Fujishima, A.; Miyazaki, T.; Maki, K. The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthod. Waves 2006, 65, 64–72. [Google Scholar] [CrossRef]
- Jhajharia, K.; Parolia, A.; Shetty Kv Mehta, L. Biofilm in endodontics: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 1–12. [Google Scholar] [CrossRef]
- Bruni, A.; Serra, F.G.; Deregibus, A.; Castroflorio, T. Shape-memory polymers in dentistry: Systematic review and patent landscape report. Materials 2019, 12, 2216. [Google Scholar] [CrossRef]
- Yan, C.; Kleiner, C.; Tabigue, A.; Shah, V.; Sacks, G.; Shah, D.; DeStefano, V. PETG: Applications in Modern Medicine. Eng. Regen. 2024, 5, 45–55. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- JBI. Chapter 7: Systematic Reviews of Etiology and Risk. JBI Manual for Evidence Synthesis; JBI: North Adelaide, Australia, 2020. [Google Scholar] [CrossRef]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J. Prosthet. Dent. 2024, 131, 1038–1042. [Google Scholar] [CrossRef]
- Nemec, M.; Behm, C.; Sedlak, M.; Nemec-Neuner, H.; Nguyen, P.Q.; Jonke, E.; Andrukhov, O. Effects of the Saliva of Patients Undergoing Orthodontic Treatment with Invisalign and Brackets on Human Gingival Fibroblasts and Oral Epithelial Cells. J. Clin. Med. 2023, 12, 7440. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, G.; Zheng, Y.; Gao, J.; Fu, Y.; Wang, Q.; Huang, L.; Pan, X.; Ding, J. “Invisible” orthodontics by polymeric “clear” aligners molded on 3D-printed personalized dental models. Regen. Biomater. 2022, 9, rbac007. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Cao, L.; Luo, T.; Qin, D.; Hua, F.; He, H. In vitro evaluation of a novel fluoride-coated clear aligner with antibacterial and enamel remineralization abilities. Clin. Oral Investig. 2023, 27, 6027–6042. [Google Scholar] [CrossRef]
- Alhendi, A.; Khounganian, R.; Almudhi, A. Cytotoxicity assessment of different clear aligner systems: An in vitro study. Angle Orthod. 2022, 92, 655–660. [Google Scholar] [CrossRef]
- Lo, I.L.; Kao, C.Y.; Huang, T.H.; Ho CTe Kao, C.T. The cytotoxicity assessment of different clear aligner materials. J. Dent. Sci. 2024, 19, 2065–2073. [Google Scholar] [CrossRef]
- Wang, Q.; Ma Jbao Wang, B.; Zhang, X.; Yin Yling Bai, H. Alterations of the oral microbiome in patients treated with the Invisalign system or with fixed appliances. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 633–640. [Google Scholar] [CrossRef]
- Löfroth, M.; Ghasemimehr, M.; Falk, A.; Vult von Steyern, P. Bisphenol A in dental materials—Existence, leakage and biological effects. Heliyon 2019, 5, e01711. [Google Scholar] [CrossRef]
- Lopes-Rocha, L.; Ribeiro-Gonçalves, L.; Henriques, B.; Özcan, M.; Tiritan, M.E.; Souza, J.C.M. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1942–1952. [Google Scholar] [CrossRef]
- Mousavinasab, S.M. Biocompatibility of composite resins. Dent. Res. J. 2011, 8, S21. [Google Scholar]
- Yang, X.; Man, Y.B.; Wong, M.H.; Owen, R.B.; Chow, K.L. Environmental health impacts of microplastics exposure on structural organization levels in the human body. Sci. Total Environ. 2022, 825, 154025. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.W.; Larson, B.E.; Sarver, D.M. Contemporary Orthodontics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 150–166. [Google Scholar]
- Al-Jewair, T.S.; Suri, S.; Tompson, B.D. Predictors of adolescent compliance with oral hygiene instructions during two-arch multibracket fixed orthodontic treatment. Angle Orthod. 2011, 81, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Farhadian, N.; Usefi Mashoof, R.; Khanizadeh, S.; Ghaderi, E.; Farhadian, M.; Miresmaeili, A. Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Øgaard, B. White Spot Lesions During Orthodontic Treatment: Mechanisms and Fluoride Preventive Aspects. Semin. Orthod. 2008, 14, 183–193. [Google Scholar] [CrossRef]
- Moynihan, P.; Petersen, P.E. Diet, nutrition and the prevention of dental diseases. Public Health Nutr. 2004, 7, 201–226. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lim, B.S.; Lee, S.J. Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 489–495. [Google Scholar] [CrossRef]
- Ando, M.; Shaikh, S.; Eckert, G. Determination of caries lesion activity: Reflection and roughness for characterization of caries progression. Oper. Dent. 2018, 43, 301–306. [Google Scholar] [CrossRef]
- Chapman, J.A.; Roberts, W.E.; Eckert, G.J.; Kula, K.S.; González-Cabezas, C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 188–194. [Google Scholar] [CrossRef]
Author/Year | Study Design | Appliance Studied/Materials | Intervention Time | Goals | Substances Analyzed | Outcomes | Conclusions |
---|---|---|---|---|---|---|---|
Nemec, M. et al., 2023 [22] | In vitro/In vivo | Invisalign aligners (SmartTrack) | First 6 months of treatment | Compare the effects of saliva from patients with Invisalign aligners and brackets on human gingival fibroblasts and oral epithelial cells. | Pro-inflammatory mediators; IL-8 production | Increase in the expression of pro-inflammatory mediators (IL-6, IL-8, MCP-1) in the analyzed cells in saliva samples of bracket patients. With the progression of orthodontic treatment (from 0 to 6 months), there was a tendency for a decrease in IL-8 production. | The type of orthodontic treatment (Invisalign vs. brackets) does not significantly influence the saliva’s effect on the inflammatory or barrier properties of oral cells. The changes seen during treatment were minor and transient. |
Dinu, S. et al., 2024 [1] | In vitro | Two clear aligner types (Thermoplastic) | 24 h | Assess the cytocompatibility and safety profile. | HaCaT keratinocytes and HGF fibroblasts (in vivo) in artificial saliva; chorioallantoic membrane | No relevant changes were observed in the morphology of HaCaT cells, except for a slight decrease in confluence in the more concentrated acidic saliva. Testing on a 3D reconstructed human epidermis (EpiDerm™ model) showed viability above 82% with all samples (the threshold for irritation is <50%). | The results suggest that CA1 and CA2 aligners are suitable materials for use, as they did not present significant cytotoxicity and were not irritating, confirming the safety and compatibility of these materials. |
Yu, X. et al., 2022 [23] | In vitro | Angelalign (Thermoplastic polyurethane) | No data | Feasibility of using ’transparent’ polymeric aligners molded into personalized 3D printed dental models. | Poliuretan (polyurethane films were molded via thermoforming into custom 3D printed dental models) | Thermoplastic polyurethane demonstrated excellent biocompatibility: low cytotoxicity, hemolysis <5%, and preserved cell morphology. | The aligner material had good mechanical properties. |
Yan, J. et al., 2024 [24] | In vitro | Fluoride-coated clear aligner plastic | 26 h | Assess the physicochemical properties and biocompatibility of a fluoride-coated clear aligner plastic. | Human fibroblasts were placed in a Minimum Essential Medium with 10% Fetal Bovine Serum and cell counts were evaluated. | Fluoride-coated clear aligners did not compromise the cell viability of human fibroblasts. | FCAP had antibacterial, fluoride recharge, and enamel remineralization capabilities with appropriate physicochemical properties and biocompatibility. |
Martina, S. et al., 2019 [7] | In vitro | Duran, Biolon, Zendura, and SmartTrack aligners | 14 days | Assess the in vitro cytotoxicity of different thermoplastic materials for clear aligners on human primary gingival fibroblasts incubated in Dulbecco’s Modified Eagle’s Medium. | Aligners with plastic materials (Duran, Biolon, Zendura, and SmartTrack) | All the materials showed mild cytotoxicity after 14 days of incubation with HGFs. Observed cell viability: Duran: 84.6% ± 4.0 (lowest cytotoxicity); SmartTrack: 78.8% ± 6.3; Zendura: 74.4% ± 2.3; Biolon: 64.6% ± 3.3 (highest cytotoxicity). Thermoforming significantly increased the cytotoxicity of Duran, Biolon, and Zendura materials. | All the materials showed some level of cytotoxicity, with Biolon being the most cytotoxic. Although they are generally safe for clinical use, caution is advised, especially with materials such as Biolon and Zendura. |
Alhendi, A. et al., 2022 [25] | In vitro | Invisalign, Eon, SureSmile, and Clarity | 30 days | Evaluate and compare the cytotoxicity of multiple clear aligner systems. | HGFs were incubated in a saline solution. | The cell viability of the HGFs decreased with increasing solution concentration, indicating a dose-dependent relationship. | The thermoplastic materials used by all the tested systems presented some degree of toxicity (slight to moderate) |
Lo, I. et al., 2024 [26] | In vitro | Duran, Keystone, Zendura, Essix C+, Maxflex, and Leone (Thermoplastic polyurethane and copolyester polyethylene terephthalate) | 14 days | Evaluating the cytotoxicity of different clear aligner materials to ensure safety and biocompatibility. | Human periodontal ligament cells (HPDL) were incubated in a Minimum Essential Medium with 10% Fetal Bovine Serum. | The HPDL cells maintained high cell viability after exposure to most of the materials tested, indicating low toxicity of the aligners, especially those composed of PETG (polyethylene terephthalate co-1,4-cyclohexylenedimethylene terephthalate) and PET (polyethylene terephthalate copolyester), especially in their original form, before thermoforming. Some thermoformed TPU (thermoplastic polyurethane) materials showed a more significant reduction in the viability of the HPDL cells. | The results indicate that under the conditions tested, these materials are generally safe for use in orthodontic treatments. |
Author/Year | A | B | C | D | E | F | G | H | I | J | K | L | Score | Bias Evaluation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nemec, M. et al., 2023 [22] | 2 | 2 | 2 | 2 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 16 | 88.9 (Low Risk) |
Dinu, S. et al., 2024 [1] | 2 | 2 | 2 | 2 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 16 | 88.9 (Low Risk) |
Yu, X. et al., 2022 [23] | 2 | 1 | 2 | 1 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 14 | 77.8 (Low Risk) |
Yan, J. et al., 2024 [24] | 2 | 2 | 2 | 1 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 15 | 83.3 (Low Risk) |
Martina, S. et al., 2019 [7] | 2 | 2 | 2 | 2 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 16 | 88.9 (Low Risk) |
Alhendi, A. et al., 2022 [25] | 2 | 2 | 2 | 2 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 16 | 88.9 (Low Risk) |
Lo, I. et al., 2024 [26] | 2 | 2 | 2 | 2 | 2 | 0 | NA | 2 | NA | NA | 2 | 2 | 16 | 88.9 (Low Risk) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.; Costa, H.; Veiga, N.; Correia, M.J.; Gomes, A.T.P.C.; Lopes, P.C. Do Clear Aligners Release Toxic Chemicals?—A Systematic Review. J. Funct. Biomater. 2025, 16, 173. https://doi.org/10.3390/jfb16050173
Ferreira M, Costa H, Veiga N, Correia MJ, Gomes ATPC, Lopes PC. Do Clear Aligners Release Toxic Chemicals?—A Systematic Review. Journal of Functional Biomaterials. 2025; 16(5):173. https://doi.org/10.3390/jfb16050173
Chicago/Turabian StyleFerreira, Mariana, Hélder Costa, Nélio Veiga, Maria J. Correia, Ana T. P. C. Gomes, and Pedro C. Lopes. 2025. "Do Clear Aligners Release Toxic Chemicals?—A Systematic Review" Journal of Functional Biomaterials 16, no. 5: 173. https://doi.org/10.3390/jfb16050173
APA StyleFerreira, M., Costa, H., Veiga, N., Correia, M. J., Gomes, A. T. P. C., & Lopes, P. C. (2025). Do Clear Aligners Release Toxic Chemicals?—A Systematic Review. Journal of Functional Biomaterials, 16(5), 173. https://doi.org/10.3390/jfb16050173