Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of PCL-Based DDS
2.3. In Vitro Antibiotic Release Profile
2.3.1. Determination of the Active Substance Concentration Using UV/Vis
2.3.2. Mathematical Analysis of the Drug Release Kinetics
2.4. Agar Diffusion Tests to Determine Antibacterial Activity
2.5. Analysis of Cytotoxicity
2.6. Statistics
3. Results
3.1. Production of PCL-Based DDS
3.2. In Vitro Release of Antibiotics from DDS
3.3. Efficient Antibacterial Activity of PCL-Based DDS
3.4. PCL Loaded with Antibiotics Maintained Cell Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, Å.; Edlund, C.; Nord, C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001, 1, 101–114. [Google Scholar] [CrossRef]
- Jain, K.K. An Overview of Drug Delivery Systems. Methods Mol. Biol. 2020, 2059, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Budală, D.G.; Luchian, I.; Tatarciuc, M.; Butnaru, O.; Armencia, A.O.; Virvescu, D.I.; Scutariu, M.M.; Rusu, D. Are Local Drug Delivery Systems a Challenge in Clinical Periodontology? J. Clin. Med. 2023, 12, 4137. [Google Scholar] [CrossRef]
- Cara, A.; Ferry, T.; Laurent, F.; Josse, J. Prophylactic Antibiofilm Activity of Antibiotic-Loaded Bone Cements against Gram-Negative Bacteria. Antibiotics 2022, 11, 137. [Google Scholar] [CrossRef]
- Mufty, H.; Bergh, M.V.D.; Meuris, B.; Metsemakers, W.-J.; Fourneau, I. Clinical Studies Reporting on Vascular Graft Coatings for the Prevention of Aortic Graft Infection: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Mufty, H.; Eynde, J.V.D.; Meuris, B.; Metsemakers, W.-J.; Van Wijngaerden, E.; Vandendriessche, T.; Steenackers, H.P.; Fourneau, I. Pre-clinical in vivo Models of Vascular Graft Coating in the Prevention of Vascular Graft Infection: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Chakfé, N.; Diener, H.; Lejay, A.; Assadian, O.; Berard, X.; Caillon, J.; Fourneau, I.; Glaudemans, A.W.; Koncar, I.; Lindholt, J.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Vascular Graft and Endograft Infections. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 339–384. [Google Scholar] [CrossRef]
- Lovering, A.; MacGowan, A. A Comparative study of the rifampicin binding and elution characteristics for collagen- and albumin-sealed vascular grafts. Eur. J. Vasc. Endovasc. Surg. 1999, 17, 347–350. [Google Scholar] [CrossRef]
- Aboshady, I.; Raad, I.; Vela, D.; Hassan, M.; Aboshady, Y.; Safi, H.J.; Buja, L.M.; Khalil, K.G. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J. Vasc. Surg. 2015, 64, 1805–1814. [Google Scholar] [CrossRef]
- Matsuura, S.; Takayama, T.; Oyama, T.G.; Oyama, K.; Taguchi, M.; Endo, T.; Akai, T.; Isaji, T.; Hoshina, K. A Radiation-Crosslinked Gelatin Hydrogel That Promotes Tissue Incorporation of an Expanded Polytetrafluoroethylene Vascular Graft in Rats. Biomolecules 2021, 11, 1105. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.; Mieremet, A.; de Vries, C.J.; Micha, D.; de Waard, V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2693–2707. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.I.; Rahbek, S.J.; Jensen-Fangel, S.; Minero, G.A.S.; Jensen, L.K.; Larsen, O.H.; Erikstrup, L.T.; Seefeldt, A.M.; Østergaard, L.; Meyer, R.L.; et al. Fibrinolytic and antibiotic treatment of prosthetic vascular graft infections in a novel rat model. PLoS ONE 2023, 18, e0287671. [Google Scholar] [CrossRef] [PubMed]
- Rosalia, M.; Grisoli, P.; Dorati, R.; Chiesa, E.; Pisani, S.; Bruni, G.; Genta, I.; Conti, B. Influence of Electrospun Fibre Secondary Morphology on Antibiotic Release Kinetic and Its Impact on Antimicrobic Efficacy. Int. J. Mol. Sci. 2023, 24, 12108. [Google Scholar] [CrossRef]
- Holländer, J.; Genina, N.; Jukarainen, H.; Khajeheian, M.; Rosling, A.; Mäkilä, E.; Sandler, N. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J. Pharm. Sci. 2016, 105, 2665–2676. [Google Scholar] [CrossRef]
- Osehontue Uroro, E.; Bright, R.; Yang Quek, J.; Vasilev, K. Lipase-Responsive Rifampicin-Based Biodegradable PCL Nanocarrier for Antibacterial Treatment. ChemNanoMat 2023, 9, e202300231. [Google Scholar] [CrossRef]
- Mirzaeei, S.; Mansurian, M.; Asare-Addo, K.; Nokhodchi, A. Metronidazole- and Amoxicillin-Loaded PLGA and PCL Nanofibers as Potential Drug Delivery Systems for the Treatment of Periodontitis: In Vitro and In Vivo Evaluations. Biomedicines 2021, 9, 975. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef]
- Flath, T. Entwicklung eines Doppelschneckenextruder-Dosierkopfes für den 3D-Druck und dessen Potenzial am Beispiel von Knochenersatzwerkstoffen. Ph.D. Dissertation, Technische Universität Dresden, Dresden, Germany, 2020. [Google Scholar]
- Liu, Y.; Chen, X.; Liu, Y.; Gao, Y.; Liu, P. Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers 2022, 14, 469. [Google Scholar] [CrossRef]
- Bruschi, M. (Ed.) Strategies to Modify the Drug Release from Pharmaceutical Systems: Mathematical Models of Drug Release; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
- Schüler, T.; Guder, C.; Alt, F.; Lorenz, K.; Sterzenbach, T.; Hannig, C.; Wiesmann, H.-P.; Kruppke, B. Degradable polycaprolactone/buffer composites as pH regulating carrier materials for drug delivery and 3D printed biomaterials. Materialia 2024, 34, 102087. [Google Scholar] [CrossRef]
- Chesterman, J.; Zhang, Z.; Ortiz, O.; Goyal, R.; Kohn, J. Principles of Tissue Engineering, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Talevi, A.; Ruiz, M.E. Korsmeyer-Peppas, Peppas-Sahlin, and Brazel-Peppas: Models of Drug Release. In The ADME Encyclopedia; Springer: Cham, Switzerland, 2022; pp. 613–621. [Google Scholar] [CrossRef]
- Gurny, R.; Doelker, E.; Peppas, N. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials 1982, 3, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.B.; Myiagi, S.; Nogales, C.G.; Campos, M.S.; Lage-Marques, J.L. Time- and concentration-dependent cytotoxicity of antibiotics used in endodontic therapy. J. Appl. Oral Sci. 2010, 18, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Duewelhenke, N.; Krut, O.; Eysel, P. Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrob. Agents Chemother. 2007, 51, 54–63. [Google Scholar] [CrossRef]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res. 2011, 29, 1070–1074. [Google Scholar] [CrossRef]
- Zong, T.-X.; Silveira, A.P.; Morais, J.A.V.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.-S.; Liu, S.-K. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. Nanomaterials 2022, 12, 1855. [Google Scholar] [CrossRef]
Antibiotic | Characteristic Wavelength | Regression Line | Regression Coefficient |
---|---|---|---|
Amoxicillin | 274 nm | y = 0.9887 x | R2 = 0.9998 |
Doxycycline | 346 nm | y = 7.0098 x | R2 = 0.9992 |
Metronidazole | 320 nm | y = 16.767 x | R2 = 1 |
Rifampicin | 475 nm | y = 4.7681 x | R2 = 0.9983 |
Sample | Zero Order | First Order | Higuchi | Peppas–Sahlin (m = 0.448) | ||
---|---|---|---|---|---|---|
R2 | R2 | R2 | R2 | K1 | K2 | |
P-A-20 | 0.8484 | 0.9907 | 0.9975 | 1 | 0.7957 | 0.0553 |
P-D-20 | 0.92 | 0.9341 | 0.9949 | 0.9967 | 0.1695 | 0.0006 |
P-M-20 | 0.9392 | 0.9503 | 0.9996 | 0.9994 | 0.1476 | 0.0025 |
P-R-20 | 0.9597 | 0.9529 | 0.998 | 0.9991 | 0.0297 | 0.0009 |
MIC in µg/mL | ||||
---|---|---|---|---|
Antibiotic | P. gingivalis | F. nucleatum | S. gordonii | E. coli |
Amoxicillin | 5 | 250 | 2 | 100 |
Doxycycline | 5 | 5 | 2 | 50 |
Metronidazole | 10 | 1 | resistant | resistant |
Rifampicin | 0.5 | 350 | 9 | 300 |
Diameter of Inhibiting Zone in mm | |||||
---|---|---|---|---|---|
Antibiotic | Concentration in µg/mL | P. gingivalis | F. nucleatum | S. gordonii | E. coli |
PCL | - | 0 | 0 | 0 | 0 |
PCL + amoxicillin | 3762.7 | >50 | 46 | 26 | 7 |
PCL + doxycycline | 397.3 | >50 | >50 | 30 | 16 |
PCL + metronidazole | 495.1 | >50 | 46 | 0 | 0 |
PCL + rifampicin | 120.1 | >50 | 34 | 26 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guder, C.; Hofmann, A.; Schüler, T.; Sterzenbach, T.; Wiesmann, H.-P.; Lorenz, K.; Hannig, C.; Reeps, C.; Kruppke, B. Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity. J. Funct. Biomater. 2025, 16, 182. https://doi.org/10.3390/jfb16050182
Guder C, Hofmann A, Schüler T, Sterzenbach T, Wiesmann H-P, Lorenz K, Hannig C, Reeps C, Kruppke B. Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity. Journal of Functional Biomaterials. 2025; 16(5):182. https://doi.org/10.3390/jfb16050182
Chicago/Turabian StyleGuder, Celine, Anja Hofmann, Therese Schüler, Torsten Sterzenbach, Hans-Peter Wiesmann, Katrin Lorenz, Christian Hannig, Christian Reeps, and Benjamin Kruppke. 2025. "Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity" Journal of Functional Biomaterials 16, no. 5: 182. https://doi.org/10.3390/jfb16050182
APA StyleGuder, C., Hofmann, A., Schüler, T., Sterzenbach, T., Wiesmann, H.-P., Lorenz, K., Hannig, C., Reeps, C., & Kruppke, B. (2025). Versatile Polycaprolactone-Based Drug Delivery System with Enhanced Cytocompatibility and Antibacterial Activity. Journal of Functional Biomaterials, 16(5), 182. https://doi.org/10.3390/jfb16050182