Color Stability, Gloss Retention, and Surface Roughness of 3D-Printed versus Indirect Prefabricated Veneers
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Stain Removal Treatment
2.3. Color Measurement
2.4. Surface Roughness
2.5. Gloss Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Veneers manufactured using the 3D printing technique are vulnerable to discoloration and are significantly affected by artificial aging in a staining solution compared to the PRCVs.
- Coffee and tea staining have a deleterious effect on the color, surface gloss, and surface roughness of all tested indirect composite veneers despite manufacturing techniques.
- The efficacy of stain removal was higher with an in-office bleaching technique compared to surface polishing in the PRCVs, while in-office bleaching and surface polishing showed comparable effects in the 3D-printed veneers.
- Veneer production using 3D printing provides cost-effective, time-efficient and on-demand solutions. However, material processing for 3D printing is crucial for long-term longevity.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PRCVs | Prefabricated resin composite veneers |
C-PRCVs | Colten prefabricated resin composite veneers |
E-PRCVs | Edelweiss prefabricated resin composite veneers |
T-Bleach | Bleached tea-stained veneers |
C-Bleach | Bleached coffee-stained veneers |
T-Polish | Polished tea-stained veneers |
C-Polish | Polished coffee-stained veneers |
GU | Gloss unit |
AM | Additive manufacturing |
TSLA | Tilted stereolithography |
CAD | Computer-aided design |
References
- Vanlıoğlu, B.A.; Kulak-Özkan, Y. Minimally Invasive Veneers: Current State of the Art. Clin. Cosmet. Investig. Dent. 2014, 6, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Nandini, S. Indirect Resin Composites. J. Conserv. Dent. 2010, 13, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Nový, B.B.; Fuller, C.E. The Material Science of Minimally Invasive Esthetic Restorations. Compend. Contin. Educ. Dent. 2008, 29, 338–346; quiz 347. [Google Scholar] [PubMed]
- Fehmer, V.; Mühlemann, S.; Hämmerle, C.H.F.; Sailer, I. Criteria for the Selection of Restoration Materials. Quintessence Int. 2014, 45, 723–730. [Google Scholar] [CrossRef]
- Alharbi, N.; Alharbi, A.; Osman, R. Stain Susceptibility of 3D-Printed Nanohybrid Composite Restorative Material and the Efficacy of Different Stain Removal Techniques: An In Vitro Study. Materials 2021, 14, 5621. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effects of Build Direction on the Mechanical Properties of 3D-Printed Complete Coverage Interim Dental Restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef]
- Novelli, C.; Scribante, A. Minimally Invasive Diastema Restoration with Prefabricated Sectional Veneers. Dent. J. 2020, 8, 60. [Google Scholar] [CrossRef]
- Gomes, G.; Perdigão, J. Prefabricated Composite Resin Veneers – A Clinical Review. J. Esthet. Restor. Dent. 2014, 26, 302–313. [Google Scholar] [CrossRef]
- Perdigão, J.; Sezinando, A.; Muñoz, M.A.; Luque-Martinez, I.V.; Loguercio, A.D. Prefabricated Veneers-Bond Strengths and Ultramorphological Analyses. J. Adhes. Dent. 2014, 16, 137–146. [Google Scholar] [CrossRef]
- Dua, P.; Londhe, S.M.; Dua, G.; Kotwal, A.; Gupta, S. Clinical Evaluation of “Componeers” and Direct Composite Veneers Using Minimally Invasive Enamel Preparation Technique: In Vivo: Study. J. Indian Prosthodont. Soc. 2020, 20, 424. [Google Scholar] [CrossRef]
- Nam, N.-E.; Shin, S.-H.; Lim, J.-H.; Shim, J.-S.; Kim, J.-E. Effects of Artificial Tooth Brushing and Hydrothermal Aging on the Mechanical Properties and Color Stability of Dental 3D Printed and CAD/CAM Materials. Materials 2021, 14, 6207. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-K.; Kim, T.-H.; Ko, C.-C.; García-Godoy, F.; Kim, H.-I.; Kwon, Y.H. Effect of Staining Solutions on Discoloration of Resin Nanocomposites. Am. J. Dent. 2010, 23, 39–42. [Google Scholar] [PubMed]
- Erdemir, U.; Yıldız, E.; Eren, M.M. Effects of Sports Drinks on Color Stability of Nanofilled and Microhybrid Composites after Long-Term Immersion. J. Dent. 2012, 40, e55–e63. [Google Scholar] [CrossRef]
- Sirin Karaarslan, E.; Bulbul, M.; Yildiz, E.; Secilmis, A.; Sari, F.; Usumez, A. Effects of Different Polishing Methods on Color Stability of Resin Composites after Accelerated Aging. Dent. Mater. J. 2013, 32, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Diken Türksayar, A.A.; Baytur, S. Color Stability, Surface Roughness and Flexural Strength of Additively Manufactured and Milled Interim Restorative Materials after Aging. Odontology 2023, 111, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lim, J.-H.; Kim, D.; Lee, D.-H.; Kim, S.G.; Kim, J.-E. Evaluation of the Color Stability of 3D Printed Resin According to the Oxygen Inhibition Effect and Temperature Difference in the Post-Polymerization Process. J. Mech. Behav. Biomed. Mater. 2022, 136, 105537. [Google Scholar] [CrossRef]
- Türkün, L.Ş.; Türkün, M. Effect of Bleaching and Repolishing Procedures on Coffee and Tea Stain Removal from Three Anterior Composite Veneering Materials. J. Esthet. Restor. Dent. 2004, 16, 290–301. [Google Scholar] [CrossRef]
- Alharbi, A.; Ardu, S.; Bortolotto, T.; Krejci, I. In-Office Bleaching Efficacy on Stain Removal from CAD/CAM and Direct Resin Composite Materials. J. Esthet. Restor. Dent. 2018, 30, 51–58. [Google Scholar] [CrossRef]
- Habib, S.R.; Rashoud, A.S.A.; Safhi, T.A.; Almajed, A.H.; Alnafisah, H.A.; Bajunaid, S.O.; Alqahtani, A.S.; Alqahtani, M. Variations in the Shades of Contemporary Dental Ceramics: An In Vitro Analysis. Crystals 2021, 11, 1288. [Google Scholar] [CrossRef]
- Billmeyer, F.W. Commission Internationale de l’Éclairage, Standard on Colorimetric Illuminants. Color Res. Appl. 1988, 13, 65–66. [Google Scholar] [CrossRef]
- Al Moaleem, M.M.; Adawi, H.A.; Alsharif, K.F.; Alhazmi, H.A.; Alshahrani, F.A.; Abu Hadi, R.M.; Kara, R.; Muyidi, H.M.; Khalid, A.; Asiri, A.M.; et al. Impact of Smokeless Tobacco on the Color Stability of Zirconia, Zirconia-Reinforced Lithium Silicate and Feldspathic CAD/CAM Restorative Materials: An In Vitro Study. Coatings 2022, 12, 207. [Google Scholar] [CrossRef]
- Baysan, A.; Sleibi, A.; Ozel, B.; Anderson, P. The Quantification of Surface Roughness on Root Caries Using Noncontact Optical Profilometry—An in Vitro Study. Laser Dent. Sci. 2018, 2, 229–237. [Google Scholar] [CrossRef]
- Alhassan, M.; Maawadh, A.; Labban, N.; Alnafaiy, S.M.; Alotaibi, H.N.; BinMahfooz, A.M. Effect of Different Surface Treatments on the Surface Roughness and Gloss of Resin-Modified CAD/CAM Ceramics. Appl. Sci. 2022, 12, 11972. [Google Scholar] [CrossRef]
- ISO 16610-21:2011; Geometrical Product Specifications (GPS)—Filtration—Part 21: Linear Profile Filters: Gaussian Filters. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 2813:2014; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. ISO—International Organization for Standardization: Geneva, Switzerland, 2014.
- Bin Nooh, A.N.; Al Nahedh, H.; AlRefeai, M.; AlKhudhairy, F. The Effects of Irradiance on Translucency and Surface Gloss of Different Bulk-Fill Composite Resins: An In Vitro Study. Clin. Cosmet. Investig. Dent. 2020, 12, 571–579. [Google Scholar] [CrossRef]
- Liebermann, A.; Langwieder, B.; Brauneis, M.; Eichberger, M.; Stawarczyk, B. Impact of Thermocycling on Mechanical Properties and Discoloration of Veneering Composite Resins after Storage in Various Staining Media. J. Prosthet. Dent. 2021, 125, 940–945. [Google Scholar] [CrossRef]
- Schmalz, G.; Cieplik, F. Biofilms on Restorative Materials. Monogr. Oral Sci. 2021, 29, 155–194. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Burrow, M.F.; Tyas, M. Influence of Food-Simulating Solutions and Surface Finish on Susceptibility to Staining of Aesthetic Restorative Materials. J. Dent. 2005, 33, 389–398. [Google Scholar] [CrossRef]
- Korać, S.; Ajanović, M.; Džanković, A.; Konjhodžić, A.; Hasić-Branković, L.; Gavranović-Glamoč, A.; Tahmiščija, I. Color Stability of Dental Composites after Immersion in Beverages and Performed Whitening Procedures. Acta Stomatol. Croat. 2022, 56, 22–32. [Google Scholar] [CrossRef]
- Ebaya, M.M.; Ali, A.I.; El-Haliem, H.A.; Mahmoud, S.H. Color Stability and Surface Roughness of Ormocer- versus Methacrylate-Based Single Shade Composite in Anterior Restoration. BMC Oral Health 2022, 22, 430. [Google Scholar] [CrossRef]
- Nuaimi, H.O.; Ragab, H.M. Effect of Aggressive Beverage on the Color Stability of Different Nano-Hybrid Resin Based Composite. Eur. J. Gen. Dent. 2014, 3, 190–193. [Google Scholar] [CrossRef]
- Elhamid, M.A.; Mosallam, R. Effect of Bleaching versus Repolishing on Colour and Surface Topography of Stained Resin Composite. Aust. Dent. J. 2010, 55, 390–398. [Google Scholar] [CrossRef]
- Al-Nahedh, H.N.; Awliya, W.Y. The Effectiveness of Four Methods for Stain Removal from Direct Resin-Based Composite Restorative Materials. Saudi Dent. J. 2013, 25, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Dederichs, M.; Viebranz, S.; An, H.; Guentsch, A.; Kuepper, H. Wear Pattern-Associated Color Stability of Prefabricated Composite Veneers versus Ceramic Veneers. J. Prosthodont. 2022, 32, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Lassila, L.; Hatem, M.; Shembesh, M.; Baady, L.; Salim, Z.; Vallittu, P. Influence of Staining Solutions and Whitening Procedures on Discoloration of Hybrid Composite Resins. Acta Odontol. Scand. 2013, 71, 144–150. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Egli, R.; Roos, M.; Özcan, M.; Hämmerle, C.H.F. The Impact of In Vitro Aging on the Mechanical and Optical Properties of Indirect Veneering Composite Resins. J. Prosthet. Dent. 2011, 106, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Almejrad, L.; Yang, C.-C.; Morton, D.; Lin, W.-S. The Effects of Beverages and Surface Treatments on the Color Stability of 3D-Printed Interim Restorations. J. Prosthodont. 2022, 31, 165–170. [Google Scholar] [CrossRef]
- Hussain, S.K.; Al-Abbasi, S.W.; Refaat, M.-M.; Hussain, A.M. The Effect of Staining and Bleaching on the Color of Two Different Types of Composite Restoration. J. Clin. Exp. Dent. 2021, 13, e1233–e1238. [Google Scholar] [CrossRef]
- Malekipour, M.R.; Sharafi, A.; Kazemi, S.; Khazaei, S.; Shirani, F. Comparison of Color Stability of a Composite Resin in Different Color Media. Dent. Res. J. 2012, 9, 441–446. [Google Scholar]
- Dederichs, M.; Fahmy, M.D.; An, H.; Guentsch, A.; Viebranz, S.; Kuepper, H. Comparison of Wear Resistance of Prefabricated Composite Veneers versus Ceramic and Enamel. J. Prosthodont. 2021, 30, 711–719. [Google Scholar] [CrossRef]
- Freitas, F.; Pinheiro de Melo, T.; Delgado, A.H.; Monteiro, P.; Rua, J.; Proença, L.; Caldeira, J.; Mano Azul, A.; Mendes, J.J. Varying the Polishing Protocol Influences the Color Stability and Surface Roughness of Bulk-Fill Resin-Based Composites. J. Funct. Biomater. 2021, 12, 1. [Google Scholar] [CrossRef]
- Papathanasiou, I.; Zinelis, S.; Papavasiliou, G.; Kamposiora, P. Effect of Aging on Color, Gloss and Surface Roughness of CAD/CAM Composite Materials. J. Dent. 2023, 130, 104423. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Platt, J.A.; Moore, K.; Spohr, A.M.; Borges, G.A. Color Stability, Gloss, and Surface Roughness of Indirect Composite Resins. J. Oral Sci. 2013, 55, 9–15. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silvennoinen, R.; Peiponen, K.-E.; Myller, K. Specular Gloss; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-055468-6. [Google Scholar]
- Basting, R.T.; Y Fernandéz, C.F.; Ambrosano, G.M.B.; De Campos, I.T. Effects of a 10% Carbamide Peroxide Bleaching Agent on Roughness and Microhardness of Packable Composite Resins. J. Esthet. Restor. Dent. 2005, 17, 256–262. [Google Scholar] [CrossRef] [PubMed]
Material | Composition |
---|---|
Irix Max DWS a | Photosensitive ceramic-filled hybrid composite material (42% of ceramic in weight) |
Componeer Brilliant b | Organic matrix: BISGMA, TEGDMA Photoinitiator and co-initiators Inorganic filler size 0.02 to 2.5 µm (80 wt%) |
Edelweiss Direct Veneers c | Highly filled nanohybrid composite filling material (83 wt%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daghrery, A. Color Stability, Gloss Retention, and Surface Roughness of 3D-Printed versus Indirect Prefabricated Veneers. J. Funct. Biomater. 2023, 14, 492. https://doi.org/10.3390/jfb14100492
Daghrery A. Color Stability, Gloss Retention, and Surface Roughness of 3D-Printed versus Indirect Prefabricated Veneers. Journal of Functional Biomaterials. 2023; 14(10):492. https://doi.org/10.3390/jfb14100492
Chicago/Turabian StyleDaghrery, Arwa. 2023. "Color Stability, Gloss Retention, and Surface Roughness of 3D-Printed versus Indirect Prefabricated Veneers" Journal of Functional Biomaterials 14, no. 10: 492. https://doi.org/10.3390/jfb14100492
APA StyleDaghrery, A. (2023). Color Stability, Gloss Retention, and Surface Roughness of 3D-Printed versus Indirect Prefabricated Veneers. Journal of Functional Biomaterials, 14(10), 492. https://doi.org/10.3390/jfb14100492