Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 4- and 6-Arm Star-Shaped Polymers and Characterization
2.2. Binding of Star-Shaped Polymers to HAP
2.3. Anti-Bacterial Attachment Activity of Linear and Star-Shaped Polymers
2.4. Water Contact Angle
3. Materials and Methods
3.1. Materials
3.2. Synthesis of tBu PAA Homopolymers
3.3. Synthesis of Random Copolymers with MA
3.4. Synthesis of Rhodamine B-Labeled Polymers
3.5. Analysis of Polymerization Process
3.6. HAP Binding Assay
3.7. Anti-Bacterial Adhesion Assay
3.8. Contact Angle Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2014, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, R.; Teles, F.; Frias-Lopez, J.; Paster, B.; Haffajee, A. Lessons learned and unlearned in periodontal microbiology. Periodontol 2000 2013, 62, 162. [Google Scholar] [CrossRef]
- Koo, H.; Falsetta, M.L.; Klein, M.I. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm. J. Dental Res. 2013, 92, 1065–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.; Beighton, D.; Curtis, M.A.; Cury, J.A.; Dige, I.; Dommisch, H.; Ellwood, R.; Giacaman, R.A.; Herrera, D.; Herzberg, M.C.; et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J. Periodontol. 2017, 44, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Bowen, W.H.; Burne, R.A.; Wu, H.; Koo, H. Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments. Trends Microbiol. 2018, 26, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Chaves, P.; Oliveira, J.; Haas, A.; Beck, R.C.R. Applications of Polymeric Nanoparticles in Oral Diseases: A Review of Recent Findings. Curr. Pharm. Des. 2018, 24, 1377–1394. [Google Scholar] [CrossRef]
- Fernandes, T.; Bhavsar, C.; Sawarkar, S.; D’Souza, A. Current and novel approaches for control of dental biofilm. Int. J. Pharm. 2018, 536, 199–210. [Google Scholar] [CrossRef]
- Hu, X.Q.; Huang, Y.Y.; Wang, Y.G.; Wang, X.Y.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740. [Google Scholar] [CrossRef]
- Pleszczynska, M.; Wiater, A.; Bachanek, T.; Szczodrak, J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol. Appl. Biochem. 2017, 64, 337–346. [Google Scholar] [CrossRef]
- Gaffar, A.; Solis-Gaffar, M.C.; Tavss, E.; Marcussen, H.W.; Rustogi, K.N. Long-term Antiplaque, Anticalculus, and Antigingivitis Effects of Benzethonium/Polymer Complex in Beagle Dogs. J. Dent. Res. 1981, 60, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Myers, C.; Zaide, L.; Nalam, P.C.; Caporizzo, M.A.; Daep, C.A.; Eckmann, D.M.; Masters, J.G.; Composto, R.J. Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. Acs Appl. Mater. Interfaces 2017, 9, 13079–13091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.M.; Serpe, M.J. Synthesis, Characterization, and Antibacterial Properties of a Hydroxyapatite Adhesive Block Copolymer. Macromolecules 2014, 47, 8018–8025. [Google Scholar] [CrossRef]
- Cui, X.N.; Koujima, Y.; Seto, H.; Murakami, T.; Hoshino, Y.; Miura, Y. Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers. Acs Biomater. Sci. Eng. 2016, 2, 205–212. [Google Scholar] [CrossRef]
- Kang, S.; Lee, M.; Kang, M.; Noh, M.; Jeon, J.; Lee, Y.; Seo, J.-H. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta Biomater 2016, 40, 70–77. [Google Scholar] [CrossRef]
- Guan, Y.H.; Lath, D.L.; de Graaf, T.; Lilley, T.H.; Brook, A.H. Moderation of oral bacterial adhesion on saliva-coated hydroxyapatite by polyaspartate. J. Appl. Microbiol. 2003, 94, 456–461. [Google Scholar] [CrossRef]
- Totani, M.; Ando, T.; Terada, K.; Terashima, T.; Kim, I.Y.; Ohtsuki, C.; Xi, C.; Kuroda, K.; Tanihara, M. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomater. Sci. 2014, 2, 1172–1185. [Google Scholar] [CrossRef]
- Muszanska, A.K.; Rochford, E.T.J.; Gruszka, A.; Bastian, A.A.; Busscher, H.J.; Norde, W.; van der Mei, H.C.; Herrmann, A. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules 2014, 15, 2019–2026. [Google Scholar] [CrossRef]
- Nejadnik, M.R.; van der Mei, H.C.; Norde, W.; Busscher, H.J. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials 2008, 29, 4117–4121. [Google Scholar] [CrossRef]
- Roest, S.; van der Mei, H.C.; Loontjens, T.J.A.; Busscher, H.J. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation. Appl. Surf. Sci. 2015, 356, 325–332. [Google Scholar] [CrossRef]
- Swartjes, J.; Veeregowda, D.H.; van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow. Adv. Funct. Mater. 2014, 24, 4435–4441. [Google Scholar] [CrossRef]
- Mi, L.; Jiang, S.Y. Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angew. Chem. -Int. Ed. 2014, 53, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Jiang, S.Y. Molecular Understanding and Design of Zwitterionic Materials. Adv. Mater. 2015, 27, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ibanescu, S.A.; Nowakowska, J.; Khanna, N.; Landmann, R.; Klok, H.A. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Macromol. Biosci. 2016, 16, 676–685. [Google Scholar] [CrossRef]
- Klok, H.A.; Genzer, J. Expanding the Polymer Mechanochemistry Toolbox through Surface-Initiated Polymerization. Acs Macro Letters 2015, 4, 636–639. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [Green Version]
- Gasteier, P.; Reska, A.; Schulte, P.; Salber, J.; Offenhausser, A.; Moeller, M.; Groll, J. Surface grafting of PEO-Based star-shaped molecules for bioanalytical and biomedical applications. Macromol. Biosci. 2007, 7, 1010–1023. [Google Scholar] [CrossRef]
- Heyes, C.D.; Groll, J.; Moller, M.; Nienhaus, G.U. Synthesis, patterning and applications of star-shaped poly(ethylene glycol) biofunctionalized surfaces. Mol. Biosyst. 2007, 3, 419–430. [Google Scholar] [CrossRef]
- Morgese, G.; Trachsel, L.; Romio, M.; Divandari, M.; Ramakrishna, S.N.; Benetti, E.M. Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes. Angew. Chem. -Int. Ed. 2016, 55, 15583–15588. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kang, H.; Choi, Y.-S.; Han, S.; Lee, J.-C. Photo-cross-linkable star-shaped polymers with poly(ethylene glycol) and renewable cardanol side groups: Synthesis, characterization, and application to antifouling coatings for filtration membranes. Polym. Chem. 2013, 4, 5065–5073. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kang, H.; Han, S.; Lee, J.-C. The increase of antifouling properties of ultrafiltration membrane coated by star-shaped polymers. J. Mater. Chem. 2012, 22, 8654–8661. [Google Scholar] [CrossRef]
- Kim, D.G.; Kang, H.; Han, S.; Kim, H.J.; Lee, J.C. Bio- and oil-fouling resistance of ultrafiltration membranes controlled by star-shaped block and random copolymer coatings. Rsc Advances 2013, 3, 18071–18081. [Google Scholar] [CrossRef]
- Fukuda, R.; Yoshida, Y.; Nakayama, Y.; Okazaki, M.; Inoue, S.; Sano, H.; Suzuki, K.; Shintani, H.; Meerbeek, B.V. Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials 2003, 24, 1867. [Google Scholar] [CrossRef]
- Yoshida, Y.; Van Meerbeek, B.; Nakayama, Y.; Snauwaert, J.; Hellemans, L.; Lambrechts, P.; Vanherle, G.; Wakasa, K. Evidence of Chemical Bonding at Biomaterial-Hard Tissue Interfaces. J. Dental Res. 2000, 79, 714. [Google Scholar] [CrossRef]
- McConnell, M.D.; Liu, Y.; Nowak, A.P.; Pilch, S.; Masters, J.G.; Composto, R.J. Bacterial plaque retention on oral hard materials: Effect of surface roughness, surface composition, and physisorbed polycarboxylate. J. Biomed. Mater. Res. Part A 2010, 92, 1518–1527. [Google Scholar] [CrossRef]
- Ren, J.M.; McKenzie, T.G.; Fu, Q.; Wong, E.H.H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T.P.; Boyer, C.; Qiao, G.G. Star Polymers. Chem. Rev. 2016, 116, 6836. [Google Scholar] [CrossRef]
- Voit, B.I.; Lederer, A. Hyperbranched and Highly Branched Polymer Architectures—Synthetic Strategies and Major Characterization Aspects. Chem. Rev. 2009, 109, 5924–5973. [Google Scholar] [CrossRef]
- Clark, W.B.; Bammann, L.L.; Gibbons, R.J. comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect. Immun. 1978, 19, 846–853. [Google Scholar]
- Hillman, J.D.; Vanhoute, J.; Gibbons, R.J. sorption of bacteria to human enamel powder. Arch. Oral Biol. 1970, 15, 899–903. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L. Synthesis of Carboxylic Block Copolymers via Reversible Addition Fragmentation Transfer Polymerization for Tooth Erosion Prevention. J. Dental Res. 2014, 93, 1264–1269. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.D.; Wang, T.X.; Mitchell, J.W.; Zaidel, L.; Qiu, J.H.; Kilpatrick-Liverman, L. Bioinspired amphiphilic phosphate block copolymers as non-fluoride materials to prevent dental erosion. Rsc Adv. 2014, 4, 49053–49060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, D.N. adsorption of LOW-molecular-weight poly(acrylic acid) on hydroxyapatite-role of molecular association and apatite dissolution. Langmuir 1991, 7, 2422–2424. [Google Scholar] [CrossRef]
- Misra, D.N. Adsorption OF low-molecular-weight sodium polyacrylate on hydroxyapatite. J. Dent. Res. 1993, 72, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Misra, D.N. Adsorption of polyacrylic acids and their sodium salts on hydroxyapatite: Effect of relative molar mass. J. Colloid Interface Sci. 1996, 181, 289–296. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 444. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrander, P.E.; Andersen, R.N.; Blehert, D.S.; Egland, P.G.; Foster, J.S.; Palmer, R.J. Communication among Oral Bacteria. Microbiol. Mol. Biol. Rev. 2002, 66, 486–505. [Google Scholar] [CrossRef] [Green Version]
- Gudipati Chakravarthy, S.; Greenlief, C.M.; Johnson Jeremiah, A.; Prayongpan, P.; Wooley Karen, L. Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: An insight into the surface compositions, topographies, and morphologies. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 6193–6208. [Google Scholar] [CrossRef]
- Kerstetter, J.L.; Gramlich, W.M. Nanometer-scale self-assembly of amphiphilic copolymers to control and prevent biofouling. J. Mater. Chem. B 2014, 2, 8043–8052. [Google Scholar] [CrossRef]
- Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.A.; Sohn, K.E.; Perry, R.; Ober, C.K.; Kramer, E.J.; Callow, M.E.; Callow, J.A.; et al. Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains. Langmuir 2006, 22, 5075–5086. [Google Scholar] [CrossRef]
- Martinelli, E.; Agostini, S.; Galli, G.; Chiellini, E.; Glisenti, A.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Graf, K.; Bartels, F.W. Nanostructured Films of Amphiphilic Fluorinated Block Copolymers for Fouling Release Application. Langmuir 2008, 24, 13138–13147. [Google Scholar] [CrossRef]
- Weinman, C.J.; Gunari, N.; Krishnan, S.; Dong, R.; Paik, M.Y.; Sohn, K.E.; Walker, G.C.; Kramer, E.J.; Fischer, D.A.; Ober, C.K. Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. Soft Matter 2010, 6, 3237–3243. [Google Scholar] [CrossRef]
- Zhao, Z.; Ni, H.; Han, Z.; Jiang, T.; Xu, Y.; Lu, X.; Ye, P. Effect of Surface Compositional Heterogeneities and Microphase Segregation of Fluorinated Amphiphilic Copolymers on Antifouling Performance. ACS Appl. Mater. Interfaces 2013, 5, 7808–7818. [Google Scholar] [CrossRef] [PubMed]
- Gudipati, C.S.; Finlay, J.A.; Callow, J.A.; Callow, M.E.; Wooley, K.L. The Antifouling and Fouling-Release Perfomance of Hyperbranched Fluoropolymer (HBFP)−Poly(ethylene glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulva. Langmuir 2005, 21, 3044–3053. [Google Scholar] [CrossRef] [PubMed]
- Imbesi, P.M.; Gohad, N.V.; Eller, M.J.; Orihuela, B.; Rittschof, D.; Schweikert, E.A.; Mount, A.S.; Wooley, K.L. Noradrenaline-Functionalized Hyperbranched Fluoropolymer–Poly(ethylene glycol) Cross-Linked Networks As Dual-Mode, Anti-Biofouling Coatings. ACS Nano 2012, 6, 1503–1512. [Google Scholar] [CrossRef]
- Delvar, A.; Lindh, L.; Arnebrant, T.; Sotres, J. Interaction of Polyelectrolytes with Salivary Pellicles on Hydroxyapatite Surfaces under Erosive Acidic Conditions. ACS Appl. Mater. Interfaces 2015, 7, 21610–21618. [Google Scholar] [CrossRef]
- Ionta, F.Q.; Mendonça, F.L.; de Oliveira, G.C.; de Alencar, C.R.B.; Honório, H.M.; Magalhães, A.C.; Rios, D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J. Dent. 2014, 42, 175–179. [Google Scholar] [CrossRef]
Polymers Selected for Anti-Bacterial Adhesion and Contact Angle Experiments | Polymer Analogues for HAP-Binding Assay | |||||||
---|---|---|---|---|---|---|---|---|
Polymer | DParm | Mn a | % Reduction | Polymer | DParm | Mn a | qmax (µmol/HAP g) | Kd (µM) |
Lin-211 | 211 | 15,300 | 31.7 ± 4.2 | F-Lin-189 | 189 | 13,700 | 1.05 ± 0.14 | 14.8 ± 5.5 |
4Star-165 | 165 | 48,000 | 17.6 ± 5.0 | F-4Star-192 | 192 | 55,800 | 0.33 ± 0.06 | 1.4 ± 0.4 |
6Star-129 | 129 | 56,600 | 29.9 ± 2.5 | F-6Star-121 | 121 | 53,100 | 0.38 ± 0.07 | 2.1 ± 0.6 |
LinMA48-194 | 194 b | 15,400 | 46.3 ± 4.3 | F-LinMA51-189 | 189 b | 15,100 | 2.83 ± 0.11 | 14.0 ± 2.0 |
4StarMA34-171 | 171 | 53,000 | 43.2 ± 4.2 | F-4StarMA37-185 | 185 | 57,700 | 0.33 ± 0.03 | 4.6 ± 0.8 |
4StarMA56-215 | 215 | 69,200 | 53.5 ± 5.5 | F-4StarMA55-149 | 149 | 48,000 | 0.28 ± 0.02 | 1.6 ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortazavian, H.; Picquet, G.A.; Lejnieks, J.; Zaidel, L.A.; Myers, C.P.; Kuroda, K. Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. J. Funct. Biomater. 2019, 10, 56. https://doi.org/10.3390/jfb10040056
Mortazavian H, Picquet GA, Lejnieks J, Zaidel LA, Myers CP, Kuroda K. Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. Journal of Functional Biomaterials. 2019; 10(4):56. https://doi.org/10.3390/jfb10040056
Chicago/Turabian StyleMortazavian, Hamid, Guillaume A. Picquet, Jānis Lejnieks, Lynette A. Zaidel, Carl P. Myers, and Kenichi Kuroda. 2019. "Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces" Journal of Functional Biomaterials 10, no. 4: 56. https://doi.org/10.3390/jfb10040056
APA StyleMortazavian, H., Picquet, G. A., Lejnieks, J., Zaidel, L. A., Myers, C. P., & Kuroda, K. (2019). Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. Journal of Functional Biomaterials, 10(4), 56. https://doi.org/10.3390/jfb10040056