Advancing Secure Face Recognition Payment Systems: A Systematic Literature Review
Abstract
1. Introduction
2. Methods
2.1. Research Question
- RQ1: What are the key technological advancements in face recognition methods that have improved payment system security over the past five years?
- RQ2: How effective are current face anti-spoofing techniques against emerging threats to face recognition payment systems?
- RQ3: What are the critical challenges involved in deploying face recognition payment systems in real-world environments?
2.2. Search Strategy
2.3. PRISMA Process
3. Results
3.1. Technological Advancements in Face Recognition Methods (RQ1)
3.2. Effectiveness of Current Face Anti-Spoofing Techniques (RQ2)
3.3. Critical Challenges and Limitations in Real-World Deployment (RQ3)
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Bank Indonesia. Indonesia Payment Systems Blueprint 2025: Navigating the National Payment Systems in the Digital Era. Bank Indonesia. 2019, pp. 1–50. Available online: https://www.bi.go.id/en/publikasi/kajian/Documents/Indonesia-Payment-Systems-Blueprint-2025.pdf (accessed on 15 May 2025).
- Zhang, W.K.; Kang, M.J. Factors Affecting the Use of Facial-Recognition Payment: An Example of Chinese Consumers. IEEE Access 2019, 7, 154360–154374. [Google Scholar] [CrossRef]
- Li, C.; Li, H. Disentangling facial recognition payment service usage behavior: A trust perspective. Telemat. Inf. 2023, 77, 101939. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, W.; Hu, B. Resistance to facial recognition payment in China: The influence of privacy-related factors. Telecomm. Policy 2021, 45, 102155. [Google Scholar] [CrossRef]
- Gururaj, H.L.; Soundarya, B.C.; Priya, S.; Shreyas, J.; Flammini, F. A Comprehensive Review of Face Recognition Techniques, Trends, and Challenges. IEEE Access 2024, 12, 107903–107926. [Google Scholar] [CrossRef]
- Jayaraman, U.; Gupta, P.; Gupta, S.; Arora, G.; Tiwari, K. Recent development in face recognition. Neurocomputing 2020, 408, 231–245. [Google Scholar] [CrossRef]
- Oloyede, M.O.; Hancke, G.P.; Myburgh, H.C. A review on face recognition systems: Recent approaches and challenges. Multimed. Tools Appl. 2020, 79, 27891–27922. [Google Scholar] [CrossRef]
- Singh, S.; Prasad, S.V.A.V. Techniques and Challenges of Face Recognition: A Critical Review. Procedia Comput. Sci. 2018, 143, 536–543. [Google Scholar] [CrossRef]
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020, 9, 1188. [Google Scholar] [CrossRef]
- Abdullakutty, F.; Elyan, E.; Johnston, P. A review of state-of-the-art in Face Presentation Attack Detection: From early development to advanced deep learning and multi-modal fusion methods. Inf. Fusion 2021, 75, 55–69. [Google Scholar] [CrossRef]
- Khairnar, S.; Gite, S.; Kotecha, K.; Thepade, S.D. Face Liveness Detection Using Artificial Intelligence Techniques: A Systematic Literature Review and Future Directions. Big Data Cogn. Comput. 2023, 7, 37. [Google Scholar] [CrossRef]
- Ming, Z.; Visani, M.; Luqman, M.M.; Burie, J.-C. A Survey on Anti-Spoofing Methods for Facial Recognition with RGB Cameras of Generic Consumer Devices. J. Imaging 2020, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Pooshideh, M.; Beheshti, A.; Qi, Y.; Farhood, H.; Simpson, M.; Gatland, N.; Soltany, M. Presentation Attack Detection: A Systematic Literature Review. ACM Comput. Surv. 2025, 57, 1–32. [Google Scholar] [CrossRef]
- Sharma, D.; Selwal, A. A survey on face presentation attack detection mechanisms: Hitherto and future perspectives. Multimed. Syst. 2023, 29, 1527–1577. [Google Scholar] [CrossRef]
- Yu, Z.; Qin, Y.; Li, X.; Zhao, C.; Lei, Z.; Zhao, G. Deep Learning for Face Anti-Spoofing: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5609–5631. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, W.; Zhang, L.; Liu, H. A MobileFaceNet-Based Face Anti-Spoofing Algorithm for Low-Quality Images. Electronics 2024, 13, 2801. [Google Scholar] [CrossRef]
- Guo, S.; Li, Q.; Gao, M.; Zhang, G.; Pan, J.; Jeon, G. Deep Learning-Based Face Forgery Detection for Facial Payment Systems. IEEE Consum. Electron. Mag. 2024, 14, 80–86. [Google Scholar] [CrossRef]
- Yu, Z.; Cai, R.; Cui, Y.; Liu, X.; Hu, Y.; Kot, A.C. Rethinking Vision Transformer and Masked Autoencoder in Multimodal Face Anti-Spoofing. Int. J. Comput. Vis. 2024, 132, 5217–5238. [Google Scholar] [CrossRef]
- Wang, K.; Huang, M.; Zhang, G.; Yue, H.; Zhang, G.; Qiao, Y. Dynamic Feature Queue for Surveillance Face Anti-spoofing via Progressive Training. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; pp. 6372–6379. [Google Scholar]
- Zou, Y.; Luo, C.; Zhang, J. DIFLD: Domain invariant feature learning to detect low-quality compressed face forgery images. Complex Intell. Syst. 2024, 10, 357–368. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Sun, J.; Li, R. Middle-shallow feature aggregation in multimodality for face anti-spoofing. Sci. Rep. 2023, 13, 9870. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, M.; Nie, Z.; Qi, X. Face Anti-spoofing Based on Client Identity Information and Depth Map. In Image and Graphics, Proceedings of the ICIG 2023, Nanjing, China, 22–24 September 2023; Lu, H., Ouyang, W., Huang, H., Lu, J., Liu, R., Dong, J., Xu, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2023; Volume 14355. [Google Scholar]
- Lu, X.; Tian, Y. Heterogeneous Kernel Based Convolutional Neural Network for Face Liveness Detection. In Bio-Inspired Computing: Theories and Applications, Proceedings of the BIC-TA 2019, Zhengzhou, China, 22–25 November 2019; Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1160. [Google Scholar]
- Parkin, A.; Grinchuk, O. Recognizing Multi-Modal Face Spoofing with Face Recognition Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1617–1623. [Google Scholar]
- Lin, B.; Li, X.; Yu, Z.; Zhao, G. Face Liveness Detection by rPPG Features and Contextual Patch-Based CNN. In Proceedings of the 2019 3rd International Conference on Biometric Engineering and Applications (ICBEA 2019), Stockholm, Sweden, 29–31 May 2019; pp. 61–68. [Google Scholar]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. In Biometric Recognition, Proceedings of the CCBR 2018, Urumqi, China, 11–12 August 2018; Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10996. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 13708–13717. [Google Scholar]
- Yu, Z.; Zhao, C.; Wang, Z.; Qin, Y.; Su, Z.; Li, X.; Zhou, F.; Zhao, G. Searching Central Difference Convolutional Networks for Face Anti-Spoofing. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5294–5304. [Google Scholar]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Niessner, M. FaceForensics++: Learning to Detect Manipulated Facial Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Repiblic of Korea, 27 October–2 November 2019; pp. 1–11. [Google Scholar]
- Tan, X.; Li, Y.; Liu, J.; Jiang, L. Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model. In Computer Vision–ECCV 2010, Heraklion, Crete, Greece, 5–11 September 2010; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6316. [Google Scholar]
- Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S.Z. A Face Antispoofing Database with Diverse Attacks. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 26–31. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 15979–15988. [Google Scholar]
- George, A.; Mostaani, Z.; Geissenbuhler, D.; Nikisins, O.; Anjos, A.; Marcel, S. Biometric Face Presentation Attack Detection with Multi-Channel Convolutional Neural Network. IEEE Trans. Inf. Forensics Secur. 2020, 15, 42–55. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, A.; Wan, J.; Liang, Y.; Guo, G.; Escalera, S.; Escalante, H.J.; Li, S.Z. CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 182–193. [Google Scholar] [CrossRef]
- Liu, A.; Tan, Z.; Wan, J.; Liang, Y.; Lei, Z.; Guo, G.; Li, S.Z. Face Anti-Spoofing via Adversarial Cross-Modality Translation. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2759–2772. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Fang, H.; Liu, A.; Wan, J.; Escalera, S.; Zhao, C.; Zhang, X.; Li, S.Z.; Lei, Z. Surveillance Face Anti-Spoofing. IEEE Trans. Inf. Forensics Secur. 2024, 19, 1535–1546. [Google Scholar] [CrossRef]
- Li, X.; Komulainen, J.; Zhao, G.; Yuen, P.-C.; Pietikäinen, M. Generalized Face Anti-Spoofing by Detecting Pulse from Face Videos. In Proceedings of the International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 4244–4249. [Google Scholar]
- Wen, D.; Han, H.; Jain, A.K. Face Spoof Detection with Image Distortion Analysis. IEEE Trans. Inf. Forensics Secur. 2015, 10, 746–761. [Google Scholar] [CrossRef]
- Erdogmus, N.; Marcel, S. Spoofing Face Recognition with 3D Masks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1084–1097. [Google Scholar] [CrossRef]
- Liu, S.; Yuen, P.C.; Zhang, S.; Zhao, G. 3D Mask Face Anti-spoofing with Remote Photoplethysmography. In Proceedings of the Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2016; Volume 9911. [Google Scholar]
- Boulkenafet, Z.; Komulainen, J.; Li, L.; Feng, X.; Hadid, A. OULU-NPU: A Mobile Face Presentation Attack Database with Real-World Variations. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG), Washington, DC, USA, 30 May–3 June 2017; pp. 612–618. [Google Scholar]
- Alotaibi, A.; Mahmood, A. Deep Face Liveness Detection Based on Nonlinear Diffusion Using Convolution Neural Network. Signal Image Video Process. 2017, 11, 713–720. [Google Scholar] [CrossRef]
- Kim, W.; Suh, S.; Han, J.-J. Face Liveness Detection From a Single Image via Diffusion Speed Model. IEEE Trans. Image Process. 2015, 24, 2456–2465. [Google Scholar] [CrossRef]
- Hao, H.; Pei, M.; Zhao, M. Face Liveness Detection Based on Client Identity Using Siamese Network. In Pattern Recognition and Computer Vision, Proceedings of the PRCV 2019, Xi’an, China, 8–11 November 2019; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11857. [Google Scholar]
- Liu, Y.; Jourabloo, A.; Liu, X. Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 389–398. [Google Scholar]
- Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face Anti-Spoofing. In Proceedings of the 2012 International Conference of Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 6–7 September 2012; pp. 1–7. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author | Year | Model | Type | Dataset | Metrics |
---|---|---|---|---|---|
Xiao et. al. [17] | 2024 | MobileFaceNet + Coordinate Attention (CA) | CNN | LQFA-D | ACER: 1.39% |
Guo et. al. [18] | 2024 | Multiscale Attention Halo Attention Network (MAHA-Net) | CNN | (a) FF++ HQ (b) FF++ LQ | (a) ACC: 97.12% (b) ACC: 91.26% |
Yu et. al. [19] | 2024 | Vision Transformer (ViT) + Adaptive Multimodal Adapter (AMA) + Modality Asymmetric Masked Autoencoder (M2A2E) | ViT | (a) WMCA (b) CASIA-SURF (c) CeFA | (a) ACER: 6.08% (b) ACER: 2.12% (c) ACER: 8.36% |
Wang et. al. [20] | 2023 | Dynamic Feature Queue (DFQ) + Progressive Training Strategy (PTS) | ViT | SuHiFiMask | ACER: 4.73% |
Zou et. al. [21] | 2023 | High Frequency Invariant Learning Module (hf-IFLM) + High Dimensional Feature Distribution Learning Module (hd-FDLM) | CNN | (a) FF++ MQ (b) FF++ LQ | (a) ACC: 96.56% (b) ACC: 90.29% |
Li et. al. [22] | 2023 | Middle Shallow Feature Aggregation (MSFA) | CNN | CASIA-SURF | ACER: 0.079% |
Wang et. al. [23] | 2023 | Siamese Network | CNN | (a) CASIA-FASD (b) Replay-Attack | (a) HTER: 23.9% (b) HTER: 38.0% |
Lu et. al. [24] | 2020 | Heterogeneous Kernel–Convolutional Neural Network (HK-CNN) | CNN | (a) NUAA (b) CASIA-FASD | (a) ACC: 99.82% (b) ACC: 99.17% |
Parkin et. al. [25] | 2019 | Multi Level Feature Aggregation (MLFA) | CNN | CASIA-SURF | TPR: 99.87% |
Lin et. al. [26] | 2019 | Multi Scale Long-Term Statistical Spectral (MS-LTSS) + Contextual Patch-based CNN (CP-CNN) | CNN | (a) MSU-MFSD (b) CASIA-FASD (c) OULU-NPU | (a) EER: 0.0% (b) EER: 1.8% (c) ACER: 15.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratama, M.H.A.; Rizal, A.; Irawati, I.D. Advancing Secure Face Recognition Payment Systems: A Systematic Literature Review. Information 2025, 16, 581. https://doi.org/10.3390/info16070581
Pratama MHA, Rizal A, Irawati ID. Advancing Secure Face Recognition Payment Systems: A Systematic Literature Review. Information. 2025; 16(7):581. https://doi.org/10.3390/info16070581
Chicago/Turabian StylePratama, M. Haswin Anugrah, Achmad Rizal, and Indrarini Dyah Irawati. 2025. "Advancing Secure Face Recognition Payment Systems: A Systematic Literature Review" Information 16, no. 7: 581. https://doi.org/10.3390/info16070581
APA StylePratama, M. H. A., Rizal, A., & Irawati, I. D. (2025). Advancing Secure Face Recognition Payment Systems: A Systematic Literature Review. Information, 16(7), 581. https://doi.org/10.3390/info16070581