Data-Driven Machine Learning-Informed Framework for Model Predictive Control in Vehicles
Abstract
:1. Introduction
1.1. Applications
1.1.1. Brakes
1.1.2. Assistance
1.1.3. Suspension
1.1.4. Race Vehicles
1.2. Hybrid Framework
1.3. Machine Learning Module
2. Materials
2.1. Focus
2.2. Equipment
2.3. Procedure
2.4. Code
3. Data Collection
3.1. Features
3.2. Seed Collection
3.2.1. Normal
3.2.2. Launch
- Session 1: Rolling launch to 90 mph.
- Session 2: Hard launch from a complete stop to 97 mph.
- Session 3: Hard launch using brake boosting (for maximum torque), from a complete stop to 55 mph.
3.2.3. Brake
- Session 1: Hard braking from 47 mph to a complete stop.
- Session 2: Hard braking from 71.5 mph to 34 mph.
- Session 3: Soft to moderate braking from 49.5 mph to a complete stop. Naturally, this session contains more data than Session 1 and Session 2, as it took longer to stop.
3.2.4. Low-Speed Corner
- Session 1: A roundabout with relatively flat elevation.
- Session 2: A roundabout featuring varying inclines and declines.
- Session 3: A dual-lane roundabout, as opposed to a single-lane roundabout, resulting in a larger outer radius.
3.2.5. High-Speed Curve
- Session 1: A curved section taken at 88 mph.
- Session 2: A curved section taken at 94 mph.
- Session 3: A curved section taken at 98 mph.
3.3. Exemplar Data Set
3.3.1. Street
3.3.2. Track
3.4. Processing
- Normal: 1
- Launch: 2
- Brake: 3
- Low-speed corner: 4
- High-speed curve: 5
4. Machine Learning Framework
4.1. Prototype Classifier
- Learning rate: 0.2
- Max depth: 3
- Estimators: 200
4.2. Pseudo-Labeling
4.3. Inference Model
4.3.1. Metrics
4.3.2. Sliding Window
4.3.3. Weighting
4.3.4. Grading
4.3.5. Inference Time
5. Results
5.1. Pit Lane
5.2. Turn 1–Turn 3
5.3. Turn 4
5.4. Turn 13–Turn 1
5.5. Exit
6. Discussion
6.1. Practical Contributions
6.2. Challenges and Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
Appendix A.4
Appendix A.5
Appendix B
Appendix B.1
Appendix B.2
Appendix B.3
Appendix B.4
Appendix B.5
References
- Norouzi, A.; Heidarifar, H.; Borhan, H.; Shahbakhti, M.; Koch, C.R. Integrating Machine Learning and Model Predictive Control for automotive applications: A review and future directions. Eng. Appl. Artif. Intell. 2023, 120, 105878. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Yuan, K.; Huang, Y.; Chen, H. A Combined Reinforcement Learning and Model Predictive Control for Car-Following Maneuver of Autonomous Vehicles. Chin. J. Mech. Eng. 2023, 36, 80. [Google Scholar] [CrossRef]
- Vu, T.M.; Moezzi, R.; Cyrus, J.; Hlava, J. Model Predictive Control for Autonomous Driving Vehicles. Electronics 2021, 10, 2593. [Google Scholar] [CrossRef]
- Majuma, R.; Heerwan, M.; Ondong, K.; Hassan, O. Investigation of Brake Pad Wear Effect due to Temperature Generation Influenced by Brake Stepping Count on Different Road Terrains. Automot. Exp. 2023, 6, 234–244. [Google Scholar] [CrossRef]
- Zhang, R.; Pourkand, A. Emergency-braking Distance Prediction using Deep Learning. arXiv 2021, arXiv:2112.01708. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Liu, X.; Chen, Y.; Qiao, J. Automatic Emergency Braking System Based on Model Predictive Control with Adaptive Sampling Time. Automob. Eng. 2023, 45, 32. [Google Scholar] [CrossRef]
- Maiworm, M.; Limon, D.; Findeisen, R. Online learning-based model predictive control with Gaussian process models and stability guarantees. Int. J. Robust Nonlinear Control 2021, 31, 8785–8812. [Google Scholar] [CrossRef]
- Vahidi, A.; Stefanopoulou, A.; Peng, H. Adaptive model predictive control for co-ordination of compression and friction brakes in heavy duty vehicles. Int. J. Adapt. Control Signal Process. 2006, 20, 581–598. [Google Scholar] [CrossRef]
- Lu, X.Y.; Hedrick, J. Heavy-duty vehicle modelling and longitudinal control. Veh. Syst. Dyn. 2005, 43, 653–669. [Google Scholar] [CrossRef]
- Panahandeh, G.; Ek, E.; Mohammadiha, N. Road friction estimation for connected vehicles using supervised machine learning. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1262–1267. [Google Scholar] [CrossRef]
- Borrelli, F.; Bemporad, A.; Fodor, M.; Hrovat, D. An MPC/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 2006, 14, 541–552. [Google Scholar] [CrossRef]
- Mondal, S.; Goswami, S. Machine learning applications in automotive engineering: Enhancing vehicle safety and performance. J. Process Manag. New Technol. 2024, 12, 61–71. [Google Scholar] [CrossRef]
- KW Automotive. In the Spotlight: KW ClubSport 3-Way and KW Variant 4 in the BMW M4. Available online: https://blog-int.kwautomotive.net/in-the-spotlight-kw-clubsport-3-way-and-kw-variant-4-in-the-bmw-m4/ (accessed on 3 March 2025).
- Dridi, I.; Hamza, A.; Yahia, N. A new approach to controlling an active suspension system based on reinforcement learning. Adv. Mech. Eng. 2023, 15, 1–21. [Google Scholar] [CrossRef]
- Pinho, J.; Costa, G.; Lima, P.U.; Ayala Botto, M. Learning-Based Model Predictive Control for Autonomous Racing. World Electr. Veh. J. 2023, 14, 163. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Wu, Z.; Rincon, D.; Christofides, P.D. Real-Time Adaptive Machine-Learning-Based Predictive Control of Nonlinear Processes. Ind. Eng. Chem. Res. 2020, 59, 2275–2290. [Google Scholar] [CrossRef]
- Giannini, F.; Famularo, D. A Data-Driven Approach to Set-Theoretic Model Predictive Control for Nonlinear Systems. Information 2024, 15, 369. [Google Scholar] [CrossRef]
- Dong, D.; Ye, H.; Luo, W.; Wen, J.; Huang, D. Collision Avoidance Path Planning and Tracking Control for Autonomous Vehicles Based on Model Predictive Control. Sensors 2024, 24, 5211. [Google Scholar] [CrossRef]
- Nezami, M.; Nguyen, N.T.; Männel, G.; Abbas, H.S.; Schildbach, G. A Safe Control Architecture Based on Robust Model Predictive Control for Autonomous Driving. arXiv 2022, arXiv:2206.09735. [Google Scholar] [CrossRef]
- Amalyan, E.; Latifi, S. Machine Learning-Based Grading of Engine Health for High-Performance Vehicles. Electronics 2025, 14, 475. [Google Scholar] [CrossRef]
- RaceBox. RaceBox Mini and Mini S Technical Specifications. 2025. Available online: https://www.racebox.pro/products/racebox-mini/tech-specs (accessed on 4 April 2025).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- BWI Group. BWI MagneRide Suspension Secures an Annual 400,000-Units. Available online: https://www.bwigroup.com/news/bwi-magneride-suspension-secures-an-annual-400000-unit/ (accessed on 1 June 2025).
- Goel, Y.; Vaskevicius, N.; Palmieri, L.; Chebrolu, N.; Arras, K.O.; Stachniss, C. Semantically Informed MPC for Context-Aware Robot Exploration. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 11218–11225. [Google Scholar] [CrossRef]
- Porsche AG. Chassis Technology of the Porsche Taycan: PASM and PDCC Overview. Available online: https://newsroom.porsche.com/en_US/products/taycan/chassis-18561.html (accessed on 1 June 2025).
- Li, N.; Shi, Y. Adaptive endocrine PID control for active suspension based on reinforcement learning. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 09544070241262354. [Google Scholar] [CrossRef]
- KW Automotive GmbH. V6 Racing—KW Track Performance. Available online: https://www.kwsuspensions.com/de-en/products/track-performance/v6-racing (accessed on 1 June 2025).
- Assi, M.; Amer, M.; Özkan, B. Adaptive Model Predictive Control of Yaw Rate and Lateral Acceleration for an Active Steering Vehicle Based on Tire Stiffness Estimation. Palest. Tech. Univ. J. Res. 2024, 12, 54–79. [Google Scholar] [CrossRef]
- Guo, J.; Xie, Z.; Liu, M.; Hu, J.; Dai, Z.; Guo, J. Data-Driven Enhancements for MPC-Based Path Tracking Controller in Autonomous Vehicles. Sensors 2024, 24, 7657. [Google Scholar] [CrossRef] [PubMed]
- Ezemobi, E.; Yakhshilikova, G.; Ruzimov, S.; Castellanos, L.M.; Tonoli, A. Adaptive Model Predictive Control Including Battery Thermal Limitations for Fuel Consumption Reduction in P2 Hybrid Electric Vehicles. World Electr. Veh. J. 2022, 13, 33. [Google Scholar] [CrossRef]
- Gonzalez, C.; Asadi, H.; Kooijman, L.; Lim, C.P. Neural Networks for Fast Optimisation in Model Predictive Control: A Review. arXiv 2024, arXiv:2309.02668. [Google Scholar] [CrossRef]
Feature | Value (G) | Description | Potential Contributor |
---|---|---|---|
GForceX | >0 | Longitudinal acceleration | Throttle |
<0 | Longitudinal deceleration | Braking | |
GForceY | >0 | Lateral acceleration | Left turn |
<0 | Lateral acceleration | Right turn | |
GForceZ | >1 | Upwards acceleration | Bump |
<1 | Downward acceleration | Pothole | |
GyroX | >0 | Roll right | Chassis lean |
<0 | Roll left | Chassis lean | |
GyroY | >0 | Pitch down | Nose dive |
<0 | Pitch up | Rear squat | |
GyroZ | >0 | Yaw left | Understeer/oversteer |
<0 | Yaw right | Understeer/oversteer |
Record | Time | Altitude | Speed | GForceX | GForceY | GForceZ | Lap | GyroX | GyroY | GyroZ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 1927.1 | 3.39 | 0.458 | −0.027 | 0.997 | 0 | 0.34 | −2.34 | −0.10 |
2 | 0.04 | 1927.1 | 3.79 | 0.504 | −0.028 | 0.996 | 0 | 0.33 | −2.39 | −0.09 |
3 | 0.08 | 1927.1 | 4.33 | 0.543 | −0.028 | 0.995 | 0 | 0.33 | −2.34 | −0.10 |
4 | 0.12 | 1927.1 | 4.91 | 0.573 | −0.029 | 0.993 | 0 | 0.34 | −2.10 | −0.12 |
5 | 0.16 | 1927.2 | 5.31 | 0.594 | −0.029 | 0.992 | 0 | 0.42 | −1.76 | −0.16 |
6 | 0.20 | 1927.2 | 5.83 | 0.605 | −0.031 | 0.990 | 0 | 0.54 | −1.30 | −0.19 |
7 | 0.24 | 1927.2 | 6.42 | 0.609 | −0.033 | 0.991 | 0 | 0.70 | −0.77 | −0.20 |
8 | 0.28 | 1927.1 | 6.97 | 0.609 | −0.034 | 0.994 | 0 | 0.87 | −0.30 | −0.22 |
9 | 0.32 | 1927.1 | 7.38 | 0.607 | −0.033 | 0.998 | 0 | 1.00 | 0.01 | −0.21 |
10 | 0.36 | 1927.2 | 7.89 | 0.603 | −0.031 | 0.999 | 0 | 1.07 | 0.18 | −0.22 |
GForceX | GForceY | GForceZ | GyroX | GyroY | GyroZ | Label |
---|---|---|---|---|---|---|
0.304 | 0.199 | 0.992 | 2.90 | 0.95 | 9.67 | 5 |
0.303 | 0.224 | 0.992 | 3.00 | 0.15 | 10.77 | 5 |
0.304 | 0.252 | 0.997 | 3.03 | −0.99 | 11.92 | 5 |
0.309 | 0.279 | 1.005 | 3.11 | −2.19 | 13.00 | 5 |
0.314 | 0.304 | 1.013 | 3.19 | −3.12 | 13.92 | 5 |
0.319 | 0.329 | 1.023 | 3.15 | −3.62 | 14.71 | 5 |
0.320 | 0.353 | 1.034 | 2.92 | −3.49 | 15.34 | 5 |
0.316 | 0.371 | 1.038 | 2.49 | −2.70 | 15.79 | 5 |
0.308 | 0.386 | 1.036 | 1.84 | −1.49 | 16.17 | 5 |
0.298 | 0.397 | 1.022 | 0.99 | −0.13 | 16.59 | 5 |
Label | Precision | Recall | Score | Support |
---|---|---|---|---|
Normal | 0.99 | 0.96 | 0.97 | 710 |
Launch | 0.95 | 0.94 | 0.95 | 507 |
Brake | 0.97 | 0.95 | 0.96 | 1172 |
Low-speed corner | 0.98 | 0.98 | 0.98 | 4026 |
High-speed curve | 0.97 | 0.98 | 0.98 | 6221 |
Accuracy | 0.98 | 12,636 | ||
Macro average | 0.97 | 0.96 | 0.97 | 12,636 |
Weighted average | 0.98 | 0.98 | 0.98 | 12,636 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amalyan, E.; Latifi, S. Data-Driven Machine Learning-Informed Framework for Model Predictive Control in Vehicles. Information 2025, 16, 511. https://doi.org/10.3390/info16060511
Amalyan E, Latifi S. Data-Driven Machine Learning-Informed Framework for Model Predictive Control in Vehicles. Information. 2025; 16(6):511. https://doi.org/10.3390/info16060511
Chicago/Turabian StyleAmalyan, Edgar, and Shahram Latifi. 2025. "Data-Driven Machine Learning-Informed Framework for Model Predictive Control in Vehicles" Information 16, no. 6: 511. https://doi.org/10.3390/info16060511
APA StyleAmalyan, E., & Latifi, S. (2025). Data-Driven Machine Learning-Informed Framework for Model Predictive Control in Vehicles. Information, 16(6), 511. https://doi.org/10.3390/info16060511