AML-Based Multi-Dimensional Co-Evolution Approach Supported by Blockchain: Architecture Design and Case Study on Intelligent Production Lines for Industry 4.0
Abstract
:1. Introduction
2. Related Works
2.1. AML-Based Multi-Dimensional Modeling Methods
2.2. Co-Evolution Management Methods
3. Research Gaps
4. Methodology
4.1. Multi-Dimensional Modeling and Co-Evolution Classification of IPLs
- Multi-dimensional AML template classification
- 2.
- Traceable blockchain evolution process
4.2. Management Container Design
4.2.1. Hybrid Management Model Design
- 1.
- IPLs version activity node relationship
- 4.
- Backend relationship between the BC and IPFS
4.2.2. Graph-Based Version Conflict Resolution Design
4.3. System Operation Based on Smart Contract Group
- 1.
- User registration activity
- 2.
- Requirement Release Activity
- 3.
- Collaborative modification activities
- 4.
- Status tracking activity
5. Case Presentation and Discussion
5.1. System Operation Testing
5.2. System Indicator Testing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Handling Version Conflict Algorithm Processes |
---|
Step 1: Input evolution list and synchronous evolution request sequence. Evolist, synlist Step 2: Traverse the evolution nodes and edges and record the corresponding IDs Procedure ConflietDetection(Evolist, synlist: Request[]) { var nodelist: hashset: for req: Evolist { if req.type = = node then nodeList.put(req.id) else edgeList.put(associatedNodes(req.id)); } Step 3: Check and modify the conflict list, including problematic nodes or edges Var conflictList, ConflictList:int []; For req:synList { Var nodeID: =(req.type==node)req.id: associatedNodes(req.id); Normal operation, perform version addition iteration if nodeList.contains(nodeID) { If req.operation==add Then Update operation ConflictList.update(nodeID); else Delete operation conflictList.delete(nodeID); } } Return to conflict list Return conflictList; |
QC () Smart Contract Query Algorithm |
---|
Step 1: Smart contract checks legality of input member ID / file ID if the ID exists in the existing ledger If the Member ID verification validated Return file version properties else Return false Step 2: Smart contract queries and gets corresponding value in blockchain ledger Inquire results <- values of encryption key or design transactions End |
References
- Van der Linden, D.; Hadar, I.; Zamansky, A. What practitioners really want: Requirements for visual notations in conceptual modeling. Softw. Syst. Model 2019, 18, 1813–1831. [Google Scholar] [CrossRef]
- Pinquié, R.; Wang, H.; Noel, F. Human-Centric Co-Design of Model-Based System Architecture.33rd CIRP Design Conference. Procedia CIRP 2023, 119, 146–151. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital twin shop-floor: A new shop-floor paradigm towards smart manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
- Liu, J.; Ji, Q.; Zhou, H.; Du, C.; Liu, X.; Li, M. A multi-dimensional evolution modeling method for digital twin process model. Robot. Comput. Integr. Manuf. 2024, 86, 102667. [Google Scholar] [CrossRef]
- Shi, J.; Liu, X.; Liu, T. Method of digital twin logic model oriented to production lines simulation. Comput. Integr. Manuf. Systems 2022, 28, 442–454. [Google Scholar] [CrossRef]
- Lu, Q.; Shen, X.; Zhou, J.; Li, M. MBD-Enhanced Asset Administration Shell for Generic Production Line Design. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 5593–5605. [Google Scholar] [CrossRef]
- Winkler, D.; Ekaputra, F.; Biffl, S. AutomationML review support in multidisciplinary engineering environments. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation, ETFA, Berlin, Germany, 6–9 September 2016; pp. 1–9. [Google Scholar]
- Lüder, A.; Schmidt, N.; Drath, R. Standardized Information Exchange Within Production System Engineering. In Multi-Disciplinary Engineering for Cyber-Physical Production Systems; Springer International Publishing: Berlin, Germany, 2017; pp. 235–257. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Schmidt, N.; Lüder, A. Recovery planning method as end-of-life support for production systems. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; pp. 1103–1108. [Google Scholar] [CrossRef]
- Whitepaper AutomationML Part 6: AutomationML Component Document Identifier: WP Compo, V 1.1.0 State. October 2020. Available online: www.automationml.org (accessed on 11 March 2025).
- Automation ML Consortium. Application Recommendation: AAS Representation Document Identifier: AR AAS, V 1.0.0 State. November 2019. Available online: https://www.automationml.org/download-archive/ (accessed on 11 March 2025).
- Berardinelli, L.; Biffl, S.; Lüder, A.; Mätzler, E.; Mayerhofer, T.; Wimmer, M.; Wolny, S. Cross-disciplinary engineering with AutomationML and SysML. at-Automatisierungstechnik 2016, 64, 253–269. [Google Scholar] [CrossRef]
- Ferreira, P.; Anandan, P.D.; Pereira, I.; Hiwarkar, V.; Sayed, M.; Lohse, N.; Aguiar, S.; Gonçalves, G.; Goncalves, J.; Bottinger, F. Integrated Design Environment for Reusable Modular Assembly Systems. Assem. Autom. 2019, 39, 664–672. [Google Scholar] [CrossRef]
- Czvetkó, T.; Abonyi, J. Data sharing in Industry 4.0–AutomationML, B2MML and International Data Spaces-based solutions. J. Ind. Inf. Integr. 2023, 33, 100438. [Google Scholar] [CrossRef]
- Automation ML Consortium. Application Recommendation Provisioning for MES and ERP–Support for IEC 62264 and B2MML. Release Date: 19 January 2021. ID: AR-MES-ERP. Version: 2.0.0. Compatibility: Automation ML2.1(CAEX3.0). Available online: https://www.researchgate.net/publication/357457963_Application_Recommendation_Provisioning_for_MES_and_ERP_-_Support_for_IEC_62264_and_B2MML (accessed on 11 March 2025).
- Lehner, D.; Sint, S.; Vierhauser, M.; Narzt, W.; Wimmer, M. AML4DT: A model-driven framework for developing and maintaining digital twins with AutomationML. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Vasteras, Sweden, 7–10 September 2021; pp. 1–8. [Google Scholar]
- Zhang, H.; Yan, Q.; Wen, Z. Information modeling for cyber-physical production system based on digital twin and AutomationML. Int. J. Adv. Manuf. Technol. 2020, 107, 1927–1945. [Google Scholar] [CrossRef]
- Lüder, A.; Hundt, L.; Keibel, A. Description of manufacturing processes using AutomationML. In Proceedings of the 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), Bilbao, Spain, 13–16 September 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Strakošová, S.; Novák, P.; Kadera, P. Product-Oriented Product-Process-Resource Asset Network and its Representation in AutomationML for Asset Administration Shell. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Winkler, D.; Nov, P.; Meixner, K.; Vysko, J.; Rinker, F.; Biffl, S. Product-process-resource asset networks as foundation for improving cpps engineering. In Proceedings of the 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2021), Vasteras, Sweden, 7–10 September 2021; pp. 1–4. [Google Scholar]
- Ding, K.; Fan, L. AML-based web-twin visualization integration framework for DT-enabled and IIoT-driven Manufacturing system under I4.0 workshop. J. Manuf. Syst. 2022, 64, 479–496. [Google Scholar] [CrossRef]
- Backhaus, J.; Reinhart, G. Digital description of products, processes and resources for task-oriented programming of assembly systems. J. Intell. Manuf. 2017, 28, 1787–1800. [Google Scholar] [CrossRef]
- Bhosale, P.; Kastner, W.; Sauter, T. Comparative Analysis of AAS and AML as a Data Source for Integrated Risk Assessment in ICS. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, Z. From simple digital twin to complex digital twin Part I: A novel modeling method for multi-scale and multi-scenario digital twin. Adv. Eng. Inform. 2022, 53, 101706. [Google Scholar] [CrossRef]
- Esser, S.; Vilgertshofer, S.; Borrmann, A. Graph-based version control for asynchronous BIM level 3 collaboration. In Proceedings of the EG-ICE Workshop on Intelligent, Computing in Engineering, Berlin, Germany, 30 June–2 July 2021; pp. 98–107. Available online: https://www.researchgate.net/publication/352835924 (accessed on 11 March 2025).
- Celik, Y.; Petri, I.; Barati, M. Blockchain supported BIM data provenance for construction projects. Comput. Ind. 2023, 144, 103768. [Google Scholar] [CrossRef]
- Bhawna; Parihar, V. Approaches and methodologies for distributed systems: Threats, challenges, and future directions. In Meta Heuristic Algorithms for Advanced Distributed Systems; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 67–84. [Google Scholar] [CrossRef]
- López, A.; Casquero, O.; Estévez, E.; Armentia, A.; Orive, D.; Marcos, M. An industrial agent-based customizable platform for I4.0 manufacturing systems. Comput. Ind. 2023, 146, 103859. [Google Scholar] [CrossRef]
- Komesker, S.; Motsch, W.; Popper, J.; Sidorenko, A.; Wagner, A.; Ruskowski, M. Enabling a Multi-Agent System for Resilient Production Flow in Modular Production Systems. Procedia CIRP 2022, 107, 991–998. [Google Scholar] [CrossRef]
- Tang, H.; Li, D.; Wang, S.; Dong, Z. CASOA: An Architecture for Agent-Based Manufacturing System in the Context of Industry 4.0. IEEE Access 2017, 6, 12746–12754. [Google Scholar] [CrossRef]
- OvGU/IFAT–LIA, Universität Magdeburg. Specification Testbed “AAS Networked”, Proactive AAS-Interaction According to the VDI/VDE 2193; Universität Magdeburg: Magdeburg, Germany, 2019. [Google Scholar]
- Tao, X.; Liu, Y.; Wong, P.K.; Chen, K.; Das, M.; Cheng, J.C. Confidentiality-minded framework for blockchain-based BIM design collaboration. Autom. Constr. 2022, 136, 104172. [Google Scholar] [CrossRef]
- Zheng, R.; Jiang, J.; Hao, X.; Ren, W.; Xiong, F.; Ren, Y. bcBIM: A blockchain based big data model for BIM modification audit and provenance in mobile cloud. Math. Probl. Eng. 2019, 2019, 5349538. [Google Scholar] [CrossRef]
- Dietz, M.; Putz, B.; Pernul, G. A distributed ledger approach to digital twin secure data sharing. In Proceedings of the IFIP Annual Conference on Data and Applications Security and Privacy, Charleston, SC, USA, 15–17 July 2019, Springer: Berlin, Germany, 2019; pp. 281–300. [Google Scholar]
- Tao, F.; Zhang, Y.; Cheng, Y.; Ren, J.; Wang, D.; Qi, Q.; Li, P. Digital twin and blockchain enhanced smart manufacturing service collaboration and management. J. Manuf. Syst. 2022, 62, 903–914. [Google Scholar] [CrossRef]
- Menglei, Z.; Ling, T. Blockchain-based collaborative evolution method for digital twin ontology model of mechanical products. Comput. Integr. Manuf. Syst. 2023, 29, 1781. [Google Scholar] [CrossRef]
- Tao, X.; Das, M.; Liu, Y.; Cheng, J.C.P. Distributed common data environment using blockchain and Interplanetary File System for secure BIM-based collaborative design. Autom. Constr. 2021, 130, 103851. [Google Scholar] [CrossRef]
- Huang, S.; Wang, G.; Yan, Y.; Fang, X. Blockchain-based data management for digital twin of product. J. Manuf. Syst. 2020, 54, 361–371. [Google Scholar] [CrossRef]
- Tao, X.; Das, M.; Zheng, C.; Liu, Y.; Wong, P.K.; Xu, Y.; Liu, H.; Gong, X.; Cheng, J.C. Enhancing BIM security in emergency construction projects using lightweight blockchain-as-a-service. Autom. Constr. 2023, 150, 104846. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Q.; Tao, F. A consistency evaluation method for digital twin models. J. Manuf. Syst. 2022, 65, 158–168. [Google Scholar] [CrossRef]
- Tong, X.; Bao, J.; Tao, F. Co-evolutionary digital twins: A multidimensional dynamic approach to digital engineering. Adv. Eng. Inform. 2024, 61, 102554. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Tian, G.; Liu, X.; Jing, X. Digital twin-based process reuses and evaluation approach for smart process planning. Int. J. Adv. Manuf. Technol. 2019, 100, 1619–1634. [Google Scholar] [CrossRef]
- Zhao, J.; Aghezzaf, E.H.; Cottyn, J. An AutomationML extension towards interoperability of 3D virtual commissioning software applications. Int. J. Comput. Integr. Manuf. 2023, 37, 1194–1213. [Google Scholar] [CrossRef]
- Esser, S.; Vilgertshofer, S.; Borrmann, A. Graph-based version control for asynchronous BIM collaboration. Adv. Eng. Inform. 2022, 53, 101664. [Google Scholar] [CrossRef]
- Esser, S.; Vilgertshofer, S.; Borrmann, A. Version control for asynchronous BIM collaboration: Model merging through graph analysis and transformation. Autom. Constr. 2023, 155, 105063. [Google Scholar] [CrossRef]
- Sheng, D.; Ding, L.; Zhong, B.; Love, P.E.D.; Luo, H.; Chen, J. Construction quality information management with blockchains. Autom. Constr. 2020, 120, 103373. [Google Scholar] [CrossRef]
Key Parameters | Define |
---|---|
ID | Unique numbering index of nodes or edges |
}, represents the total version number, the previous version number, and the current version number, respectively | |
The set of creators of nodes or edges | |
The timestamp of node or version creation/update | |
Flag Mark Issue Version Status, carry version details through expansion Data Block “type struct ()” |
Core Activities | Interface | Interface functions | Interface User Role |
---|---|---|---|
User registration activity | UR () | Registering smart contract | Customers, team engineers, team project managers, review experts, production engineers |
Requirement Release Activity | IC () | Initialization smart contract | Customers, team project managers, review experts |
UC () | Update smart contract | Team engineers, team project managers, review experts | |
Collaborative modification activities | UC () | Update smart contract | Team engineers, team project managers, review experts |
AC () | Approval Smart Contract | Customers, team project managers, review experts | |
QC () | Query smart contract | Customers, team engineers, team project managers, review experts, production engineers | |
Status tracking activity | QC () | Query smart contract | Customers, team engineers, team project managers, review experts, production engineers |
Item | Size | Description |
---|---|---|
Block number | 2 B | 12 |
Block hash | 32 B | h4UquoXh4UquoXHLPFo2XbhHLPFo2Xbh |
Previous hash | 32 B | oPwmQUSnxjQuPU87yuro58ad801qmklpm |
Timestamp | 18 B | yyyyMMdd hh:mm:ssss |
Block Merkle root | 32 B | Fixed settings test (256-bit/32 B) |
Block Merkle tree | 640 B | Fixed settings test (32 B summary × 20 Hash number) |
Transaction data | 2840 B | 284 B × 10(Pack every 10 transactions) |
Total | 3596 B | Approximately 3.6 KB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, K.; Gerhard, D.; Fan, L. AML-Based Multi-Dimensional Co-Evolution Approach Supported by Blockchain: Architecture Design and Case Study on Intelligent Production Lines for Industry 4.0. Information 2025, 16, 243. https://doi.org/10.3390/info16030243
Ding K, Gerhard D, Fan L. AML-Based Multi-Dimensional Co-Evolution Approach Supported by Blockchain: Architecture Design and Case Study on Intelligent Production Lines for Industry 4.0. Information. 2025; 16(3):243. https://doi.org/10.3390/info16030243
Chicago/Turabian StyleDing, Kai, Detlef Gerhard, and Liuqun Fan. 2025. "AML-Based Multi-Dimensional Co-Evolution Approach Supported by Blockchain: Architecture Design and Case Study on Intelligent Production Lines for Industry 4.0" Information 16, no. 3: 243. https://doi.org/10.3390/info16030243
APA StyleDing, K., Gerhard, D., & Fan, L. (2025). AML-Based Multi-Dimensional Co-Evolution Approach Supported by Blockchain: Architecture Design and Case Study on Intelligent Production Lines for Industry 4.0. Information, 16(3), 243. https://doi.org/10.3390/info16030243