Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets
Abstract
:1. Introduction
- Taxonomy: A brand new classification of FER is proposed, as well as for datasets. This taxonomy not only references traditional methodologies, but also incorporates recent advancements in deep learning. Specifically, it integrates techniques such as Generative Adversarial Networks (GANs), graph-based methods, and transformers in the context of FER. Additionally, there is a distinct taxonomy for datasets: the datasets are categorized into images and sequences. These are further divided into controlled and uncontrolled groups. The controlled group includes categories such as movies and lab settings, while the uncontrolled group pertains to the “in the wild” category. To the best of our knowledge, no existing research has addressed this comprehensive classification.
- Highlighting top models: Evaluation results from the most significant methods across different datasets are presented, covering approximately 60 methods.
- Suggestions and future directions: Apart from the conclusion, possible future research directions for FER are suggested.
2. Evolution Timeline
3. FER: Facial Expression Recognition
3.1. Pro-Deep Learning Era
3.1.1. Preprocessing
Face Detection
Viola–Jones
- Selection of Haar-like features [145].
- Creation of an integral image (an integral image is computed to enable the fast calculation of Haar-like features over different image regions.)
- AdaBoost (AdaBoost is a machine learning algorithm that combines multiple weak classifiers to form a strong classifier) [109] training.
- Creation of classifier cascades.
Face Geometric Alignment
3.1.2. Feature Extraction
Feature Extraction
- geometric-feature-based methods
- appearance-based methods
- Optical flow
- Feature point tracking
Dimensionality Reduction
- The space that is required to store the dataset is reduced.
- Less computation training time is required for reduced dimensions of features.
- Reduced dimensions of features also help to faster visualize the data.
- It removes the redundant features by taking care of multicollinearity.
- Principal Component Analysis (PCA)
3.1.3. Classification
3.2. Deep Learning Era
3.2.1. A Brief History
- (a)
- Data augmentation is an option for preventing overfitting in DL models.
- (b)
- As time progressed, larger and more diverse datasets collected from real-world scenarios emerged. Notable examples include AffectNet [83], ExpW [95], EmotionNet [92,93], and RAF-DB [94,194,195]. These datasets enabled the development of Facial Expression Recognition (FER) methods with enhanced performances and promising outcomes in recognition tasks.
- (c)
- To enhance facial expression recognition, an ideal dataset with diverse images of expressions, age, gender, and ethnicity can be utilized, along with multitasking deep networks and transfer learning techniques.
- (d)
- Preprocessing [196] is pivotal in managing diverse data variations. Here are some reasons why preprocessing is advantageous: (i) Standardization: Preprocessing techniques like normalization or standardization ensure that features with different scales or units are brought to a typical range, preventing certain features from dominating the learning process. (ii) Noise reduction: Filtering or denoising techniques applied during preprocessing minimize the impact of noisy data, improving the model’s ability to extract meaningful features. (iii) Feature extraction (referred to above). (iv) Dimensionality reduction (referred to above). (v) Handling missing values: Preprocessing techniques, such as imputation or exclusion, address missing data, ensuring that the model is trained on complete and consistent data, resulting in reduced bias and improved accuracy and reliability of predictions.
Convolutional Neural Network (CNN)
Deep Belief Network (DBN)
Recurrent Neural Network (RNN)
- One-to-one (or Vanilla NN): Handles one input to one output, typical in regular ML problems.
- One too many: Generates a sequence of outputs from one input, such as in image captioning.
- Many to one: Takes a sequence of inputs to produce one output, useful in sentiment analysis.
- Many to many: Takes a sequence of inputs and produces a sequence of outputs, as in machine translation.
- Bidirectional Recurrent Neural Networks (BRNN)
- Gated Recurrent Units (GRU)
- Long Short-Term Memory (LSTM)
Autoencoder (AE)
GAN
Hybrid Model
Graphs
Transformers
3.2.2. State-of-the-Art
3.2.3. Static Images Deep FER Networks
Loss Layer
Ensemble Network
- Hyperparameter tuning in CNNs often requires significant domain expertise and computational effort.
- The stochastic gradient descent algorithm has shown limitations in training deep architectures, particularly when handling large datasets. This is exacerbated by issues like vanishing gradients.
- CNNs designed for FER are sensitive to a plethora of real-world variables, including age, gender, facial morphology, and ethnic background. Thus, face emotions have overlapping aspects, making them less robust and complicating implementation.
Multitask Networks
Cascaded Networks
GAN
Graphs
Transformer
3.2.4. Deep Sequence FER Networks
Frame Aggregation
Spatiotemporal FER Network
A/A | Datasets | Method | Descriptor | Year | Performance (%) |
---|---|---|---|---|---|
1 | [253] | DTAGN | 2015 | 7 classes: 97.25 | |
2 | [224] | DCNN | 2016 | 6 classes: 98.6 | |
3 | [58] | STRNN | 2018 | 7 classes: 95.4 | |
4 | [277] | DCNN | 2019 | 7 classes: 97 | |
5 | CK+ | [41] | CNNs + BiLSTM | 2020 | 7 classes: 99.6 |
6 | [42] | FER-VT | 2021 | 7 classes: 100! | |
7 | [43] | ViT and SE | 2021 | 7 classes: 99.8 | |
8 | [44] | SL + SSL | 2021 | 7 classes: 98.2 | |
9 | [63] | PAU-Net | 2022 | 7 classes: 99.5 | |
10 | [280] | CAKE | 2018 | 7 classes: 61.07 | |
11 | [281] | DSNN with a Supervised Loss function | 2019 | 7 classes: 64 | |
12 | [37] | Emotion-GCN | 2021 | 7 classes: 66.46 | |
13 | AffectNet | [60] | Ad-Corre | 2021 | 7 classes: 63.36 |
14 | [54] | DACL | 2021 | 7 classes: 65.20 | |
15 | [56] | DAN | 2022 | 7 classes: 65.69 | |
16 | [39] | Multi-task EfficientNet-B2 | 2022 | 7 classes: 66.29 | |
17 | [59] | EmoAffectNet | 2022 | 7 classes: 66.4 | |
18 | [58] | STRNN | 2018 | 7 classes: 95.4 | |
19 | JAFFE | [282] | Hybrid CRNN | 2018 | 7 classes: 94.9 |
20 | [283] | NN | 2018 | 7 classes: 93.8 | |
21 | [49] | Attentional Convolutional Network | 2021 | 7 classes: 92.8 | |
22 | [275] | ARBEx | 2023 | 7 classes: 96.67 | |
22 | [258] | CNN + Handcrafted features model BOVW | 2019 | 7 classes: 75.42 | |
23 | [284] | Multi-Level | 2019 | 7 classes: 74.09 | |
Convolutional Neural Networks | |||||
25 | FER2013 | [285] | CNN hypeparemeters optim. | 2021 | 7 classes: 72.16 |
26 | [260] | VGGNet | 2021 | 7 classes: 73.28 | |
27 | [286] | LHC | 2021 | 7 classes: 74.42 | |
28 | [61] | Ensemble ResMaskingNet with 6 other CNNs | 2021 | 7 classes: 76.82 | |
29 | [287] | CNN | 2015 | 7 classes: 93.33 | |
30 | [255] | 2 CNN + 4 Inception layers | 2016 | 7 classes: 77.9 | |
31 | MMI | [288] | CNN + CRF | 2017 | 7 classes: 78.68 |
32 | [259] | MBCNN-LSTM | 2020 | 7 classes: 81.60 | |
33 | [50] | 3D CNN | 2021 | 7 classes: 96.69 | |
34 | [224] | DCNN | 2017 | 7 classes: 55.15 | |
35 | [247] | IL-CNN | 2018 | 7 classes: 52.52 | |
36 | SFEW 2.0 | [57] | RAN | 2020 | 7 classes: 56.4 |
37 | [66] | IPD-FER | 2022 | 7 classes: 58.43 | |
38 | [69] | CRS-CONT | 2022 | 7 classes: 60.09 | |
39 | [62] | FER-former | 2023 | 7 classes: 62.18 | |
40 | [289] | PPDN | 2016 | 7 classes: 84.59 | |
41 | [290] | DCPN | 2018 | 7 classes: 86.23 | |
42 | Oulu- CASIA | [291] | CNN | 2018 | 8 classes: 91.67 |
43 | [263] | Multi-task learning CNN | 2019 | 8 classes: 89.6 | |
44 45 | [48] [47] | SCNN Cascade attention-based FER network | 2022 2022 | 6 classes: 88.09 8 classes: 89.29 | |
46 | [292] | VGG-Face | 2020 | 7 classes: 77.5 | |
47 | [293] | PSR network | 2020 | 7 classes: 88.98 | |
48 | [294] | MixAugment | 2020 | 7 classes: 87.54 | |
49 | RAF-DB | [67] | EfficientFace | 2021 | 7 classes: 88.36 |
50 | [295] | RUL | 2021 | 7 classes: 88.98 | |
51 | [68] | EAC | 2022 | 7 classes: 89.99 | |
52 | [62 | FER-former | 2023 | 7 classes: 91.30 | |
53 | [296] | CNN–ResNet | 2020 | 7 classes: 65.5 | |
54 | AFEW | [297] | Multi-level | 2020 | 7 classes: 55.17 |
6.0 | attention model | ||||
55 | [40] | Multi-task neural network | 2021 | 7 classes: 59.27 | |
56 | [252] | EEM (KTN + STSN) | 2020 | 7 classes: 90.49 | |
57 | [42] | CNN + grid-wise attention + visual transformer | 2021 | 7 classes: 90.04 | |
58 | FER+ | [64] | TransFER | 2021 | 7 classes: 90.83 |
59 | [65] | EASE | 2022 | 7 classes: 90.26 | |
60 | [62] | FER-former | 2023 | 7 classes: 90.96 |
4. Facial Expression Datasets
- Image
- (a)
- (b)
- Video
4.1. Image
4.1.1. Controlled (or Lab)
JAFFE [72,73]
MMI [97,98]
BU-3DFE [74,75]
Multi-PIE [96]
RAFD [89]
Yale Face Database [79]
TFD [87]
KDEF [90,91]
CalD3r & MenD3s [129]
4.1.2. Uncontrolled (or in the Wild)
FER2013 [86]
FER+ [71]
Emotion Net [92,93]
AffectNet [83]
B [94]
ExpW [95]
Emotic [101,102]
Aff-Wild2 [103]
4.2. Video
4.2.1. Uncontrolled (or Lab)
CK [76]
CK+ [76,77,78]
Oulu-CASIA [88]
MUG [99,100]
AFEW 7.0 [80,81,82]
4.2.2. Uncontrolled (or in the Wild)
5. Comparison Dataset and Methods
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IC | Image Controlled |
IU | Image Uncontrolled |
SC | Sequence Controlled |
SU | Sequence Uncontrolled |
CVPR | Computer Vision and Pattern Recognition |
ABAW | Affective Behavior Analysis in-the-Wild |
AU | Action Unit |
RNN | Recurrent Neural Network |
ACN | Attentional Convolutional Network |
DBN | Deep Belief Network |
CNN | Convolutional Neural Network |
ViT | Vision Transformer |
SE | Squeeze and Excitation |
SL | Supervised Learning |
MSCNN | Multi-Signal CNN |
PHRNN | Partial Based Hierarchical Bidirectional RNN |
SSL | Self-Supervised Learning |
DAN | Distract your Attention Network |
CPU | Central Processing Unit |
GPU | Graphics Processing Unit |
CAKE | Compact and Accurate K-dimensional representation of Emotion |
DTAGN | Deep Temporal Appearance-Geometry Network |
DTGN | Deep Temporal Geometry Network |
DTAN | Deep Temporal Appearance Network |
LBP | Local Binary Pattern |
PReLU | Parametric Rectified Linear Unit |
DCT | Discrete Cosine transform |
PCA | Principal Component Analysis |
PPDN | Peak-Piloted Deep Network |
FER | Facial expression recognition |
RAN | Region Attention Network |
ARBEx | Attentive feature extraction with Reliability Balancing for robust fac1i7a7l0 Exp |
cGAN | Conditional GAN |
SAE | Sparse Autoencoder |
VGG | Visual Geometry Group |
GCN | Graph Convolutional Network |
DTAGN | Deep Temporal Appearance-Geometry Network |
DDMTL | Discriminative Deep Multi-Tasking Learning |
3DCNN + DAP | 3D CNN + Deformable Action Parts |
DBN | Deep Belief Network |
AU | Action Unit |
DeRL | De-expression Residue Learning |
SCNN | Sparse Autoencoder and CNN |
DL | Deep Learning |
RBM | Restricted Boltzmann Machines |
PDM | Point Distribution Model |
RUL | Relative Uncertain Learning |
RF | Random Forest |
AAM | Active Appearance Model |
SDM | Supervised Descent Method |
MoT | Mixtures of Trees |
SCNN | Sparse Autoencoder and CNN |
LDA | Linear Discriminant Analysis |
GRU | Gated Recurrent Units |
BPTT | Back Propagation Through Time |
GAN | Generative Adversarial Network |
STC-NLSTM | Spatio-Temporal Convolutional features with Nested LSTM |
IFRP | Identity-Preserving Face Recovery from Portraits |
SIFT | Scale-Invariant Feature Transform |
FC | Fully Connected |
MRE-CNN | Multi-Region Ensemble CNN |
DLP-CNN | Deep Locality-Preserving CNN |
AT-GCN | Attention Enhanced Temporal GCN |
DeRL | De-expression Residue Learning |
RMN | Residual Masking Network |
BiLSTM | Bidirectional LSTM |
WMCNN-LSTM | Weighted Mixture Convolutional Neural Network–LSTM |
References
- Pantic, M.; Rothkrantz, L. Automatic analysis of facial expressions: The state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1424–1445. [Google Scholar] [CrossRef]
- Fasel, B.; Luettin, J. Automatic facial expression analysis: A survey. Pattern Recognit. 2003, 36, 259–275. [Google Scholar] [CrossRef]
- Pantic, M.; Rothkrantz, L.J. Facial action recognition for facial expression analysis from static face images. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2004, 34, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Z.; Jain, A.K.; Tian, Y.L.; Kanade, T.; Cohn, J.F. Facial Expression analysis. In Handbook of Face Recognition; Springer: New York, NY, USA, 2005; pp. 247–275. [Google Scholar]
- Shan, C.; Gong, S.; McOwan, P.W. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 2009, 27, 803–816. [Google Scholar] [CrossRef]
- Bettadapura, V. Face expression recognition and analysis: The state of the art. arXiv 2012, arXiv:1203.6722. [Google Scholar]
- Konar, A.; Chakraborty, A. Emotion Recognition: A Pattern Analysis Approach; John Wiley & Sons: Hoboken, USA, 2015. [Google Scholar]
- Zhao, X.; Zhang, S. A review on facial expression recognition: Feature extraction and classification. IETE Tech. Rev. 2016, 33, 505–517. [Google Scholar] [CrossRef]
- Martinez, B.; Valstar, M.F.; Jiang, B.; Pantic, M. Automatic analysis of facial actions: A survey. IEEE Trans. Affect. Comput. 2017, 10, 325–347. [Google Scholar] [CrossRef]
- Azizan, I.; Khalid, F. Facial emotion recognition: A brief review. In Proceedings of the International Conference on Sustainable Engineering, Technology and Management (ICSETM-2018), Karnataka, India, 19–20 April 2018; Volume 20. [Google Scholar]
- Mehta, D.; Siddiqui, M.F.H.; Javaid, A.Y. Facial emotion recognition: A survey and real-world user experiences in mixed reality. Sensors 2018, 18, 416. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, Z. A survey of facial expression recognition based on deep learning. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 90–94. [Google Scholar] [CrossRef]
- Mellouk, W.; Handouzi, W. Facial emotion recognition using deep learning: Review and insights. Procedia Comput. Sci. 2020, 175, 689–694. [Google Scholar] [CrossRef]
- Patel, K.; Mehta, D.; Mistry, C.; Gupta, R.; Tanwar, S.; Kumar, N.; Alazab, M. Facial sentiment analysis using AI techniques: State-of-the-art, taxonomies, and challenges. IEEE Access 2020, 8, 90495–90519. [Google Scholar] [CrossRef]
- Revina, I.M.; Emmanuel, W.S. A survey on human face expression recognition techniques. J. King Saud Univ. Comput. Inf. Sci. 2021, 33, 619–628. [Google Scholar] [CrossRef]
- Dang, V.T.; Do, H.Q.; Vu, V.V.; Yoon, B. Facial Expression Recognition: A Survey and its Applications. In Proceedings of the 2021 23rd International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Republic of Korea, 7–10 February 2021; pp. 359–367. [Google Scholar] [CrossRef]
- Jampour, M.; Javidi, M. Multiview Facial Expression Recognition, A Survey. IEEE Trans. Affect. Comput. 2022, 13, 2086–2105. [Google Scholar] [CrossRef]
- Canal, F.Z.; Müller, T.R.; Matias, J.C.; Scotton, G.G.; de Sa Junior, A.R.; Pozzebon, E.; Sobieranski, A.C. A Survey on Facial Emotion Recognition Techniques: A State-of-the-Art Literature Review. Inf. Sci. 2022, 582, 593–617. [Google Scholar] [CrossRef]
- Khan, A.R. Facial Emotion Recognition Using Conventional Machine Learning and Deep Learning Methods: Current Achievements, Analysis and Remaining Challenges. Information 2022, 13, 268. [Google Scholar] [CrossRef]
- Dujaili, M.J.A. Survey on facial expressions recognition: Databases, features and classification schemes. Multimed. Tools Appl. 2023, 83, 7457–7478. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Li, J. Emotion Recognition Using Different Sensors, Emotion Models, Methods and Datasets: A Comprehensive Review. Sensors 2023, 23, 2455. [Google Scholar] [CrossRef]
- Dulguerov, P.; Marchal, F.; Wang, D.; Gysin, C. Review of objective topographic facial nerve evaluation methods. Am. J. Otol. 1999, 20, 672–678. [Google Scholar]
- Stanković, M.; Nešić, M.; Obrenović, J.; Stojanović, D.; Milošević, V. Recognition of facial expressions of emotions in criminal and non-criminal psychopaths: Valence-specific hypothesis. Personal. Individ. Differ. 2015, 82, 242–247. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; Taylor, J. Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 2001, 18, 32–80. [Google Scholar] [CrossRef]
- Abdat, F.; Maaoui, C.; Pruski, A. Human-computer interaction using emotion recognition from facial expression. In Proceedings of the 2011 UKSim 5th European Symposium on Computer Modeling and Simulation, Madrid, Spain, 16–18 November 2011; pp. 196–201. [Google Scholar]
- Hickson, S.; Dufour, N.; Sud, A.; Kwatra, V.; Essa, I. Eyemotion: Classifying facial expressions in VR using eye-tracking cameras. In Proceedings of the 2019 Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; pp. 1626–1635. [Google Scholar]
- Chen, C.H.; Lee, I.J.; Lin, L.Y. Augmented reality-based self-facial modeling to promote the emotional expression and social skills of adolescents with autism spectrum disorders. Res. Dev. Disabil. 2015, 36, 396–403. [Google Scholar] [CrossRef]
- Assari, M.A.; Rahmati, M. Driver drowsiness detection using face expression recognition. In Proceedings of the 2011International Conference on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia, 16–18 November 2011; pp. 337–341. [Google Scholar]
- Zhan, C.; Li, W.; Ogunbona, P.; Safaei, F. A real-time facial expression recognition system for online games. Int. J. Comput. Games Technol. 2008, 2008, 542918. [Google Scholar] [CrossRef]
- Allied-Market. Available online: https://www.alliedmarketresearch.com/emotion-detection-and-recognition-market/ (accessed on 1 February 2023).
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Friesen, W.V. Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues; Ishk: Los Altos, CA, USA, 2003; Volume 10. [Google Scholar]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Matsumoto, D. More evidence for the universality of a contempt expression. Motiv. Emot. 1992, 16, 363–368. [Google Scholar] [CrossRef]
- Ekman, P.; Cordaro, D. What is meant by calling emotions basic. Emot. Rev. 2011, 3, 364–370. [Google Scholar] [CrossRef]
- Antoniadis, P.; Filntisis, P.P.; Maragos, P. Exploiting Emotional Dependencies with Graph Convolutional Networks for Facial Expression Recognition. In Proceedings of the 2021 16th International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur, India, 15–18 December 2021. [Google Scholar] [CrossRef]
- Zangeneh Soroush, M.; Maghooli, K.; Setarehdan, S.; Motie Nasrabadi, A. Emotion classification through nonlinear EEG analysis using machine learning methods. Int. Clin. Neurosci. J 2018, 5, 135–149. [Google Scholar] [CrossRef]
- Savchenko, A.V.; Savchenko, L.V.; Makarov, I. Classifying emotions and engagement in online learning based on a single facial expression recognition neural network. IEEE Trans. Affect. Comput. 2022, 13, 2132–2143. [Google Scholar] [CrossRef]
- Savchenko, A.V. Facial expression and attributes recognition based on multi-task learning of lightweight neural networks. In Proceedings of the 2021 IEEE 19th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 16–18 September 2021; pp. 119–124. [Google Scholar]
- Liang, D.; Liang, H.; Yu, Z.; Zhang, Y. Deep convolutional BiLSTM fusion network for facial expression recognition. Vis. Comput. 2020, 36, 499–508. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, C.; Wang, X.; Jiang, F. Facial expression recognition with grid-wise attention and visual transformer. Inf. Sci. 2021, 580, 35–54. [Google Scholar] [CrossRef]
- Aouayeb, M.; Hamidouche, W.; Soladie, C.; Kpalma, K.; Seguier, R. Learning vision transformer with squeeze and excitation for facial expression recognition. arXiv 2021, arXiv:2107.03107. [Google Scholar]
- Pourmirzaei, M.; Montazer, G.A.; Esmaili, F. Using Self-Supervised Auxiliary Tasks to Improve Fine-Grained Facial Representation. arXiv 2021, arXiv:2105.06421. [Google Scholar]
- Zheng, H.; Wang, R.; Ji, W.; Zong, M.; Wong, W.K.; Lai, Z.; Lv, H. Discriminative deep multi-task learning for facial expression recognition. Inf. Sci. 2020, 533, 60–71. [Google Scholar] [CrossRef]
- Foggia, P.; Greco, A.; Saggese, A.; Vento, M. Multi-task learning on the edge for effective gender, age, ethnicity and emotion recognition. Eng. Appl. Artif. Intell. 2023, 118, 105651. [Google Scholar] [CrossRef]
- Zhu, X.; He, Z.; Zhao, L.; Dai, Z.; Yang, Q. A Cascade Attention Based Facial Expression Recognition Network by Fusing Multi-Scale Spatio-Temporal Features. Sensors 2022, 22, 1350. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Sheng, M.; Wang, C.; Gao, R.; Yu, H. Hybrid neural networks based facial expression recognition for smart city. Multimed. Tools Appl. 2022, 81, 319–342. [Google Scholar] [CrossRef]
- Minaee, S.; Minaei, M.; Abdolrashidi, A. Deep-emotion: Facial expression recognition using attentional convolutional network. Sensors 2021, 21, 3046. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, B.G.; Chilamkurti, N. A robust facial expression recognition algorithm based on multi-rate feature fusion scheme. Sensors 2021, 21, 6954. [Google Scholar] [CrossRef]
- Akhand, M.; Roy, S.; Siddique, N.; Kamal, M.A.S.; Shimamura, T. Facial emotion recognition using transfer learning in the deep CNN. Electronics 2021, 10, 1036. [Google Scholar] [CrossRef]
- Mehendale, N. Facial emotion recognition using convolutional neural networks (FERC). SN Appl. Sci. 2020, 2, 446. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Q.; Wang, S. Learning deep global multi-scale and local attention features for facial expression recognition in the wild. IEEE Trans. Image Process. 2021, 30, 6544–6556. [Google Scholar] [CrossRef]
- Farzaneh, A.H.; Qi, X. Facial expression recognition in the wild via deep attentive center loss. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Online, 5–9 January 2021; pp. 2402–2411. [Google Scholar]
- Chen, Y.; Wang, J.; Chen, S.; Shi, Z.; Cai, J. Facial motion prior networks for facial expression recognition. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Wen, Z.; Lin, W.; Wang, T.; Xu, G. Distract your attention: Multi-head cross attention network for facial expression recognition. arXiv 2021, arXiv:2109.07270. [Google Scholar]
- Wang, K.; Peng, X.; Yang, J.; Meng, D.; Qiao, Y. Region attention networks for pose and occlusion robust facial expression recognition. IEEE Trans. Image Process. 2020, 29, 4057–4069. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Kumar, S.; Kumar, A.; Shamsolmoali, P.; Zareapoor, M. Hybrid deep neural networks for face emotion recognition. Pattern Recognit. Lett. 2018, 115, 101–106. [Google Scholar] [CrossRef]
- Ryumina, E.; Dresvyanskiy, D.; Karpov, A. In search of a robust facial expressions recognition model: A large-scale visual cross-corpus study. Neurocomputing 2022, 514, 435–450. [Google Scholar] [CrossRef]
- Fard, A.P.; Mahoor, M.H. Ad-corre: Adaptive correlation-based loss for facial expression recognition in the wild. IEEE Access 2022, 10, 26756–26768. [Google Scholar] [CrossRef]
- Pham, L.; Vu, T.H.; Tran, T.A. Facial Expression Recognition Using Residual Masking Network. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 4513–4519. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Gong, M.; Lu, Y.; Liu, L. FER-former: Multi-modal Transformer for Facial Expression Recognition. arXiv 2023, arXiv:2303.12997. [Google Scholar]
- Wang, X.; Zhang, T.; Chen, C.L.P. PAU-Net: Privileged Action Unit Network for Facial Expression Recognition. IEEE Trans. Cogn. Dev. Syst. 2022, 15, 1252–1262. [Google Scholar] [CrossRef]
- Xue, F.; Wang, Q.; Guo, G. TransFER: Learning Relation-Aware Facial Expression Representations with Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 3601–3610. [Google Scholar]
- Wang, L.; Jia, G.; Jiang, N.; Wu, H.; Yang, J. EASE: Robust Facial Expression Recognition via Emotion Ambiguity-SEnsitive Cooperative Networks. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 218–227. [Google Scholar]
- Jiang, J.; Deng, W. Disentangling Identity and Pose for Facial Expression Recognition. IEEE Trans. Affect. Comput. 2022, 13, 1868–1878. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Q.; Zhou, F. Robust lightweight facial expression recognition network with label distribution training. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; Volume 35, pp. 3510–3519. [Google Scholar]
- Zhang, Y.; Wang, C.; Ling, X.; Deng, W. Learn from all: Erasing attention consistency for noisy label facial expression recognition. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 418–434. [Google Scholar]
- Li, H.; Wang, N.; Yang, X.; Gao, X. CRS-CONT: A Well-Trained General Encoder for Facial Expression Analysis. IEEE Trans. Image Process. 2022, 31, 4637–4650. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, H.; Bai, J.; Liu, M.; Hu, Z. A discriminatively deep fusion approach with improved conditional GAN (im-cGAN) for facial expression recognition. Pattern Recognit. 2023, 135, 109157. [Google Scholar] [CrossRef]
- Barsoum, E.; Zhang, C.; Ferrer, C.C.; Zhang, Z. Training deep networks for facial expression recognition with crowd-sourced label distribution. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 279–283. [Google Scholar]
- Lyons, M.J.; Akamatsu, S.; Kamachi, M.; Gyoba, J.; Budynek, J. The Japanese female facial expression (JAFFE) database. In Proceedings of the Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998; pp. 14–16. [Google Scholar]
- The Japanese Female Facial Expression (JAFFE) Database. 2017. Available online: http://www.kasrl.org/jaffe.html (accessed on 1 February 2023).
- Yin, L.; Wei, X.; Sun, Y.; Wang, J.; Rosato, M.J. A 3D facial expression database for facial behavior research. In Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK, 10–12 April 2006; pp. 211–216. [Google Scholar]
- BU-3DFE Dataset. 2016. Available online: https://www.cs.binghamton.edu/~lijun/Research/3DFE/3DFE_Analysis.html (accessed on 1 February 2023).
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Kanade, T.; Cohn, J.F.; Tian, Y. Comprehensive database for facial expression analysis. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), Grenoble, France, 28–30 March 2000; pp. 46–53. [Google Scholar]
- Tian, Y.I.; Kanade, T.; Cohn, J.F. Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Yale Face Database. 2017. Available online: http://vision.ucsd.edu/content/yale-face-database (accessed on 1 February 2023).
- Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Acted Facial Expressions in the Wild Database; Australian Technical Report TR-CS-11; Australian National University: Canberra, Australia, 2011. [Google Scholar]
- Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting large, richly annotated facial-expression databases from movies. IEEE Multimed. 2012, 19, 34–41. [Google Scholar] [CrossRef]
- Dhall, A.; Goecke, R.; Ghosh, S.; Joshi, J.; Hoey, J.; Gedeon, T. From individual to group-level emotion recognition: Emotiw 5.0. In Proceedings of the 19th ACM international Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 524–528. [Google Scholar]
- Mollahosseini, A.; Hasani, B.; Mahoor, M.H. Affectnet: A database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 2017, 10, 18–31. [Google Scholar] [CrossRef]
- Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark. In Proceedings of the 2011 IEEE International Conference on Computer VISION Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 2106–2112. [Google Scholar]
- Dhall, A.; Ramana Murthy, O.; Goecke, R.; Joshi, J.; Gedeon, T. Video and image based emotion recognition challenges in the wild: Emotiw 2015. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 423–426. [Google Scholar]
- Goodfellow, I.J.; Erhan, D.; Carrier, P.L.; Courville, A.; Mirza, M.; Hamner, B.; Cukierski, W.; Tang, Y.; Thaler, D.; Lee, D.H.; et al. Challenges in representation learning: A report on three machine learning contests. In Proceedings of the International Conference on Neural Information Processing, Daegu, Republic of Korea, 3–7 November 2013; Springer: Cham, Switzelrand, 2013; pp. 117–124. [Google Scholar]
- Susskind, J.M.; Anderson, A.K.; Hinton, G.E. The Toronto Face Database; Technical Report 3; Department of Computer Scienice, University of Toronto: Toronto, ON, Canada, 2010; p. 29. [Google Scholar]
- Zhao, G.; Huang, X.; Taini, M.; Li, S.Z.; PietikäInen, M. Facial expression recognition from near-infrared videos. Image Vis. Comput. 2011, 29, 607–619. [Google Scholar] [CrossRef]
- Langner, O.; Dotsch, R.; Bijlstra, G.; Wigboldus, D.H.; Hawk, S.T.; Van Knippenberg, A. Presentation and validation of the Radboud Faces Database. Cogn. Emot. 2010, 24, 1377–1388. [Google Scholar] [CrossRef]
- Lundqvist, D.; Flykt, A.; Öhman, A. Karolinska directed emotional faces. Cogn. Emot. 1998, 91, 630. [Google Scholar]
- KDEF Face Database. 1998. Available online: https://www.kdef.se/home/aboutKDEF.html (accessed on 1 February 2023).
- Fabian Benitez-Quiroz, C.; Srinivasan, R.; Martinez, A.M. Emotionet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5562–5570. [Google Scholar]
- Benitez-Quiroz, C.F.; Srinivasan, R.; Feng, Q.; Wang, Y.; Martinez, A.M. Emotionet challenge: Recognition of facial expressions of emotion in the wild. arXiv 2017, arXiv:1703.01210. [Google Scholar]
- Li, S.; Deng, W.; Du, J. Reliable crowd sourcing and deep locality-preserving learning for expression recognition in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2852–2861. [Google Scholar]
- Zhang, Z.; Luo, P.; Loy, C.C.; Tang, X. From facial expression recognition to interpersonal relation prediction. Int. J. Comput. Vis. 2018, 126, 550–569. [Google Scholar] [CrossRef]
- Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; Baker, S. Multi-PIE. In Proceedings of the 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, 17–19 September 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Pantic, M.; Valstar, M.; Rademaker, R.; Maat, L. Web-based database for facial expression analysis. In Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6 July 2005. [Google Scholar]
- MMI Facial Expression Database. 2017. Available online: https://mmifacedb.eu (accessed on 1 February 2023).
- Aifanti, N.; Papachristou, C.; Delopoulos, A. The MUG facial expression database. In Proceedings of the 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, Desenzano del Garda, Italy, 12–14 April 2010; pp. 1–4. [Google Scholar]
- Multimedia Understanding Group (MUG) Database. 2017. Available online: https://mug.ee.auth.gr/fed (accessed on 1 February 2023).
- Kosti, R.; Alvarez, J.M.; Recasens, A.; Lapedriza, A. Context based emotion recognition using emotic dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2755–2766. [Google Scholar] [CrossRef]
- Emotic Database. 2017. Available online: http://sunai.uoc.edu/emotic/ (accessed on 1 February 2023).
- Kollias, D.; Zafeiriou, S. Aff-Wild2: Extending the Aff-Wild Database for Affect Recognition. arXiv 2018, arXiv:1811.07770. [Google Scholar]
- Bassili, J.N. Facial motion in the perception of faces and of emotional expression. J. Exp. Psychol. Hum. Percept. Perform. 1978, 4, 373. [Google Scholar] [CrossRef] [PubMed]
- Padgett, C.; Cottrell, G. Representing face images for emotion classification. Adv. Neural Inf. Process. Syst. 1996, 9, 894–900. [Google Scholar]
- Guo, G.; Li, S.Z.; Chan, K. Face recognition by support vector machines. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), Grenoble, France, 28–30 March 2000; pp. 196–201. [Google Scholar]
- Matsugu, M.; Mori, K.; Mitari, Y.; Kaneda, Y. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 2003, 16, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Sebe, N.; Gozman, F.; Cirelo, M.C.; Huang, T.S. Learning Bayesian network classifiers for facial expression recognition both labeled and unlabeled data. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003 Proceedings, Madison, WI, USA, 18–20 June 2003; Volume 1, p. 1. [Google Scholar]
- Wang, Y.; Ai, H.; Wu, B.; Huang, C. Real time facial expression recognition with AdaBoost. In Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, Cambridge, UK, 26 August 2004; Volume 3, pp. 926–929. [Google Scholar] [CrossRef]
- Kotsia, I.; Pitas, I. Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Trans. Image Process. 2006, 16, 172–187. [Google Scholar] [CrossRef]
- Zhao, G.; Pietikainen, M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Ranzato, M.; Susskind, J.; Mnih, V.; Hinton, G. On deep generative models with applications to recognition. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2857–2864. [Google Scholar]
- Zhong, L.; Liu, Q.; Yang, P.; Liu, B.; Huang, J.; Metaxas, D.N. Learning active facial patches for expression analysis. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2562–2569. [Google Scholar]
- Tang, Y. Deep learning using linear support vector machines. arXiv 2013, arXiv:1306.0239. [Google Scholar]
- Kahou, S.E.; Pal, C.; Bouthillier, X.; Froumenty, P.; Gülçehre, Ç.; Memisevic, R.; Vincent, P.; Courville, A.; Bengio, Y.; Ferrari, R.C.; et al. Combining modality specific deep neural networks for emotion recognition in video. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction, Sydney, Australia, 9–13 December 2013; pp. 543–550. [Google Scholar]
- Liu, M.; Li, S.; Shan, S.; Wang, R.; Chen, X. Deeply learning deformable facial action parts model 2149 for dynamic expression analysis. In Proceedings of the Asian conference on computer vision. 2150 Springer; 2014; pp. 143–157. [Google Scholar]
- Ebrahimi Kahou, S.; Michalski, V.; Konda, K.; Memisevic, R.; Pal, C. Recurrent neural networks for emotion recognition in video. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 467–474. [Google Scholar]
- Kim, B.K.; Lee, H.; Roh, J.; Lee, S.Y. Hierarchical Committee of Deep CNNs with Exponentially-Weighted Decision Fusion for Static Facial Expression Recognition. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, New York, NY, USA, 9–13 November 2015; pp. 427–434. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, X.; Li, D.; Liu, Y. Video-based emotion recognition using CNN-RNN and C3D hybrid networks. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 445–450. [Google Scholar]
- Zhang, K.; Huang, Y.; Du, Y.; Wang, L. Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans. Image Process. 2017, 26, 4193–4203. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, T.; Mao, Q.; Xu, C. Joint pose and expression modeling for facial expression recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3359–3368. [Google Scholar]
- Liu, C.; Jiang, W.; Wang, M.; Tang, T. Group Level Audio-Video Emotion Recognition Using Hybrid Networks. In Proceedings of the 2020 International Conference on Multimodal Interaction, New York, NY, USA, 25–29 October 2020; pp. 807–812. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, A.; Kumar, M. Face detection techniques: A review. Artif. Intell. Rev. 2019, 52, 927–948. [Google Scholar] [CrossRef]
- Bhele, S.G.; Mankar, V.H. A review paper on face recognition techniques. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2012, 1, 339–346. [Google Scholar]
- Mutlag, W.K.; Ali, S.K.; Aydam, Z.M.; Taher, B.H. Feature extraction methods: A review. J. Phys. Conf. Ser. 2020, 1591, 012028. [Google Scholar] [CrossRef]
- Jun, H.; Shuai, L.; Jinming, S.; Yue, L.; Jingwei, W.; Peng, J. Facial Expression Recognition Based on VGGNet Convolutional Neural Network. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 4146–4151. [Google Scholar] [CrossRef]
- Abhishree, T.; Latha, J.; Manikantan, K.; Ramachandran, S. Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique. Procedia Comput. Sci. 2015, 45, 312–321. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Kanellopoulos, D.; Pintelas, P.E. Data preprocessing for supervised leaning. Int. J. Comput. Sci. 2006, 1, 111–117. [Google Scholar]
- Ulrich, L.; Marcolin, F.; Vezzetti, E.; Nonis, F.; Mograbi, D.C.; Scurati, G.W.; Dozio, N.; Ferrise, F. CalD3r and MenD3s: Spontaneous 3D facial expression databases. J. Vis. Commun. Image Represent. 2024, 98, 104033. [Google Scholar] [CrossRef]
- Zeng, D.; Veldhuis, R.; Spreeuwers, L. A survey of face recognition techniques under Occlusioniet. IET Biom. 2021, 10, 581–606. [Google Scholar] [CrossRef]
- Ekenel, H.K.; Stiefelhagen, R. Why is facial occlusion a challenging problem? In Proceedings of the International Conference on Biometrics, Alghero, Italy, 2–5 June 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 299–308. [Google Scholar]
- Braje, W.L.; Kersten, D.; Tarr, M.J.; Troje, N.F. Illumination effects in face recognition. Psychobiology 1998, 26, 371–380. [Google Scholar] [CrossRef]
- Wood, R.; Olszewska, J.I. Lighting-variable AdaBoost based-on system for robust face detection. In Proceedings of the 5th International Conference on Bio-Inspired Systems and Signal Processing, Algarve, Portugal, 1–4 February 2012; SciTePress Digital Library: Algarve, Portugal, 2012; pp. 494–497. [Google Scholar]
- Zou, W.W.; Yuen, P.C. Very low resolution face recognition problem. IEEE Trans. Image Process. 2011, 21, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Abaza, A.; Harrison, M.A.; Bourlai, T.; Ross, A. Design and evaluation of photometric image quality measures for effective face recognition. IET Biom. 2014, 3, 314–324. [Google Scholar] [CrossRef]
- Prikler, F. Evaluation of emotional state of a person based on facial expression. In Proceedings of the 2016 XII International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine, 20–24 April 2016; pp. 161–163. [Google Scholar]
- Shreve, M.; Godavarthy, S.; Goldgof, D.; Sarkar, S. Macro-and micro-expression spotting in long videos using spatio-temporal strain. In Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), Santa Barbara, CA, USA, 21–25 March 2011; pp. 51–56. [Google Scholar]
- Hasan, M.K.; Ahsan, M.S.; Newaz, S.S.; Lee, G.M. Human face detection techniques: A comprehensive review and future research directions. Electronics 2021, 10, 2354. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, p. 1. [Google Scholar] [CrossRef]
- Cootes, T.F.; Taylor, C.J. Active shape models—‘smart snakes’. In Proceedings of the BMVC92: Proceedings of the British Machine Vision Conference, Leeds, UK, 22–24 September 1992; Springer: Berlin/Heidelberg, Germany, 1992; pp. 266–275. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [Google Scholar] [CrossRef]
- Liu, C.; Wechsler, H. Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Netw. 2003, 14, 919–928. [Google Scholar]
- Zhang, Z.; Lyons, M.; Schuster, M.; Akamatsu, S. Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998; pp. 454–459. [Google Scholar]
- Face-Apple. Available online: https://machinelearning.apple.com/research/face-detection#1 (accessed on 1 February 2023).
- Mita, T.; Kaneko, T.; Hori, O. Joint Haar-like features for face detection. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), Beijing, China, 17–21 October 2005; Volume 1, pp. 1619–1626. [Google Scholar] [CrossRef]
- Johnston, B.; Chazal, P.d. A review of image-based automatic facial landmark identification techniques. EURASIP J. Image Video Process. 2018, 2018, 86. [Google Scholar] [CrossRef]
- Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 681–685. [Google Scholar] [CrossRef]
- Asthana, A.; Zafeiriou, S.; Cheng, S.; Pantic, M. Incremental face alignment in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1859–1866. [Google Scholar]
- Xiong, X.; De la Torre, F. Supervised descent method and its applications to face alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 532–539. [Google Scholar]
- Ren, S.; Cao, X.; Wei, Y.; Sun, J. Face alignment at 3000 fps via regressing local binary features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1685–1692. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Li, S.; Deng, W. Deep facial expression recognition: A survey. IEEE Trans. Affect. Comput. 2020, 13, 1195–1215. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, C. Image based static facial expression recognition with multiple deep network learning. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 435–442. [Google Scholar]
- Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active shape models-their training and application. Comput. Vis. Image Underst. 1995, 61, 38–59. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Schaal, S. Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford, CA, USA, 29 June–2 July 2000; Morgan Kaufmann: Burlington, MA, USA, 2000; Volume 1, pp. 288–293. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Tomasi, C. Histograms of oriented gradients. Comput. Vis. Sampl. 2012, 1–6. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Tharwat, A. Principal component analysis: An overview. Pattern Recognit. 2016, 3, 197–240. [Google Scholar]
- Friesen, E.; Ekman, P. Facial action coding system: A technique for the measurement of facial movement. Palo Alto 1978, 3, 5. [Google Scholar]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef]
- Hong, X.; Xu, Y.; Zhao, G. Lbp-top: A tensor unfolding revisit. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Springer: Cham, Switzerland, 2017; pp. 513–527. [Google Scholar]
- Bosch, A.; Zisserman, A.; Munoz, X. Image classification using random forests and ferns. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Mase, K. Recognition of facial expression from optical flow. IEICE Trans. Inf. Syst. 1991, 74, 3474–3483. [Google Scholar]
- Cohn, J.; Zlochower, A.; Lien, J.; Kanade, T. Feature-point tracking by optical flow discriminates subtle differences in facial expression. In Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 14–16 April 1998; pp. 396–401. [Google Scholar] [CrossRef]
- Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of optical flow techniques. Int. J. Comput. Vis. 1994, 12, 43–77. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V. Facial action coding system. Environ. Psychol. Nonverbal Behav. 1978, 22. [Google Scholar]
- Canedo, D.; Neves, A.J. Facial expression recognition using computer vision: A systematic review. Appl. Sci. 2019, 9, 4678. [Google Scholar] [CrossRef]
- Carreira-Perpinán, M.A. A Review of Dimension Reduction Techniques; Technical Report CS-96-09; Department of Computer Science, University of Sheffield: Sheffield, UK, 1997; Volume 9, pp. 1–69. [Google Scholar]
- Calder, A.J.; Burton, A.M.; Miller, P.; Young, A.W.; Akamatsu, S. A principal component analysis of facial expressions. Vis. Res. 2001, 41, 1179–1208. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Vretos, N.; Tefas, A.; Pitas, I. Facial expression recognition with robust covariance estimation and Support Vector Machines. In Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 23–26 September 2012; pp. 1–5. [Google Scholar]
- Deng, H.B.; Jin, L.W.; Zhen, L.X.; Huang, J.C. A new facial expression recognition method based on local Gabor filter bank and PCA plus LDA. Int. J. Inf. Technol. 2005, 11, 86–96. [Google Scholar]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Nefian, A.V.; Hayes, M.H. Hidden Markov models for face recognition. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Seattle, WA, USA, 15 May 1998; Volume 5, pp. 2721–2724. [Google Scholar]
- Michel, P.; El Kaliouby, R. Real time facial expression recognition in video using support vector machines. In Proceedings of the 5th International Conference on Multimodal Interfaces, Vancouver, BC, Canada, 5–7 November 2003; pp. 258–264. [Google Scholar]
- Dagher, I.; Dahdah, E.; Al Shakik, M. Facial expression recognition using three-stage support vector machines. Vis. Comput. Ind. Biomed. Art 2019, 2, 24. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Wu, S.T.; Roberts, K.; Datta, S.; Du, J.; Ji, Z.; Si, Y.; Soni, S.; Wang, Q.; Wei, Q.; Xiang, Y.; et al. Deep learning in clinical natural language processing: A methodical review. J. Am. Med. Inform. Assoc. JAMIA 2020, 27, 457–470. [Google Scholar] [CrossRef]
- Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access 2019, 7, 19143–19165. [Google Scholar] [CrossRef]
- Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; et al. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 2022, 13, 1728. [Google Scholar] [CrossRef]
- Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Wang, X.; Wang, K.; Lian, S. A survey on face data augmentation for the training of deep neural networks. Neural Comput. Appl. 2020, 32, 15503–15531. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends® Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- McCelloch, W.; Pitts, W. A logical calculus of the idea immanent in neural nets. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Padgett, C.W.; Cottrell, G. Representing Face Images for Emotion Classification. In Proceedings of the NIPS, Cambridge, MA, USA, 3–5 December 1996. [Google Scholar]
- RAFD Face Database. 2010. Available online: http://rafd.socsci.ru.nl/RaFD2/RaFD?p=main (accessed on 1 February 2023).
- Li, S.; Deng, W. Reliable Crowd sourcing and Deep Locality-Preserving Learning for Unconstrained Facial Expression Recognition. IEEE Trans. Image Process. 2019, 28, 356–370. [Google Scholar] [CrossRef]
- Olszewska, J.I. Automated face recognition: Challenges and solutions. In Pattern Recognition Analysis and Applications; IntechOpen: Rijeka, Croatia, 2016; pp. 59–79. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Han, S.; Meng, Z.; Tong, Y. Facial expression recognition via a boosted deep belief network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1805–1812. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical Report; California University San Diego, La Jolla Institute for Cognitive Science: La Jolla, CA, USA, 1985. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Zeng, N.; Zhang, H.; Song, B.; Liu, W.; Li, Y.; Dobaie, A.M. Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 2018, 273, 643–649. [Google Scholar] [CrossRef]
- Lopes, A.T.; De Aguiar, E.; De Souza, A.F.; Oliveira-Santos, T. Facial expression recognition with convolutional neural networks: Coping with few data and the training sample order. Pattern Recognit. 2017, 61, 610–628. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Ponti, M.A.; Ribeiro, L.S.F.; Nazare, T.S.; Bui, T.; Collomosse, J. Everything you wanted to know about deep learning for computer vision but were afraid to ask. In Proceedings of the 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), Niteroi, Brazil, 17–18 October 2017; pp. 17–41. [Google Scholar]
- O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Le, T.; Duan, Y. Pointgrid: A deep network for 3d shape understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9204–9214. [Google Scholar]
- Singh, S.; Nasoz, F. Facial expression recognition with convolutional neural networks. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 0324–0328. [Google Scholar]
- Gholamalinezhad, H.; Khosravi, H. Pooling methods in deep neural networks, a review. arXiv 2020, arXiv:2009.07485. [Google Scholar]
- Zhang, C.L.; Luo, J.H.; Wei, X.S.; Wu, J. In Defense of Fully Connected Layers in Visual Representation Transfer. In Proceedings of the Advances in Multimedia Information Processing—PCM 2017; Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X., Eds.; Springer: Cham, Switzerland, 2018; pp. 807–817. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Parkhi, O.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the BMVC 2015—Proceedings of the British Machine Vision Conference 2015, Swansea, UK, 7–10 September 2015. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2016, arXiv:1605.07678, 2016. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features With 3D Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Konda, K.; Memisevic, R.; Krueger, D. Zero-bias autoencoders and the benefits of co-adapting features. arXiv 2014, arXiv:1402.3337. [Google Scholar]
- Ding, H.; Zhou, S.K.; Chellappa, R. Facenet2expnet: Regularizing a deep face recognition net for expression recognition. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 118–126. [Google Scholar]
- Wang, H.; Raj, B. On the origin of deep learning. arXiv 2017, arXiv:1702.07800. [Google Scholar]
- Li, C.; Wang, Y.; Zhang, X.; Gao, H.; Yang, Y.; Wang, J. Deep belief network for spectral–spatial classification of hyperspectral remote sensor data. Sensors 2019, 19, 204. [Google Scholar] [CrossRef]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Yu, Z.; Liu, G.; Liu, Q.; Deng, J. Spatio-temporal convolutional features with nested LSTM for facial expression recognition. Neurocomputing 2018, 317, 50–57. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B.; Tian, G. Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture. Pattern Recognit. Lett. 2020, 131, 128–134. [Google Scholar] [CrossRef]
- Yang, B.; Cao, J.; Ni, R.; Zhang, Y. Facial Expression Recognition Using Weighted Mixture Deep Neural Network Based on Double-Channel Facial Images. IEEE Access 2018, 6, 4630–4640. [Google Scholar] [CrossRef]
- Dresvyanskiy, D.; Ryumina, E.; Kaya, H.; Markitantov, M.; Karpov, A.; Minker, W. End-to-End Modeling and Transfer Learning for Audiovisual Emotion Recognition in-the-Wild. Multimodal Technol. Interact. 2022, 6, 11. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Applications of GAN. Available online: https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/ (accessed on 1 February 2023).
- Shen, Y.; Zhou, B.; Luo, P.; Tang, X. Facefeat-gan: A two-stage approach for identity-preserving face synthesis. arXiv 2018, arXiv:1812.01288. [Google Scholar]
- Shiri, F.; Yu, X.; Porikli, F.; Hartley, R.; Koniusz, P. Identity-preserving face recovery from stylized portraits. Int. J. Comput. Vis. 2019, 127, 863–883. [Google Scholar] [CrossRef]
- Li, J.; Lam, E.Y. Facial expression recognition using deep neural networks. In Proceedings of the 2015 IEEE International Conference on Imaging Systems and Techniques (IST), Macau, China, 16–18 September 2015; pp. 1–6. [Google Scholar]
- Zhang, S.; Pan, X.; Cui, Y.; Zhao, X.; Liu, L. Learning affective video features for facial expression recognition via hybrid deep learning. IEEE Access 2019, 7, 32297–32304. [Google Scholar] [CrossRef]
- Khanum, A.; Lee, C.Y.; Yang, C.S. Deep-Learning-Based Network for Lane Following in Autonomous Vehicles. Electronics 2022, 11, 3084. [Google Scholar] [CrossRef]
- Pan, X. Fusing HOG and convolutional neural network spatial–temporal features for video-based facial expression recognition. IET Image Process. 2020, 14, 176–182. [Google Scholar] [CrossRef]
- Sun, X.; Lv, M. Facial expression recognition based on a hybrid model combining deep and shallow features. Cogn. Comput. 2019, 11, 587–597. [Google Scholar] [CrossRef]
- Abdulsattar, N.S.; Hussain, M.N. Facial expression recognition using HOG and LBP features with convolutional neural network. Bull. Electr. Eng. Inform. 2022, 11, 1350–1357. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515. [Google Scholar]
- Cai, J.; Meng, Z.; Khan, A.S.; Li, Z.; O’Reilly, J.; Tong, Y. Island Loss for Learning Discriminative Features in Facial Expression Recognition. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 302–309. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Guo, Y.; Tao, D.; Yu, J.; Xiong, H.; Li, Y.; Tao, D. Deep Neural Networks with Relativity Learning for facial expression recognition. In Proceedings of the 2016 IEEE International Conference on Multimedia Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Vijaya Kumar, B.V.K.; You, J.; Jia, P. Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Li, Y.; Lu, Y.; Li, J.; Lu, G. Separate loss for basic and compound facial expression recognition in the wild. In Proceedings of the Asian Conference on Machine Learning, PMLR, Nagoya, Japan, 17–19 November 2019; pp. 897–911. [Google Scholar]
- Li, H.; Wang, N.; Ding, X.; Yang, X.; Gao, X. Adaptively learning facial expression representation via cf labels and distillation. IEEE Trans. Image Process. 2021, 30, 2016–2028. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.; Yim, J.; Park, S.; Kim, J. Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2983–2991. [Google Scholar] [CrossRef]
- Bargal, S.A.; Barsoum, E.; Ferrer, C.C.; Zhang, C. Emotion recognition in the wild from videos using images. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 433–436. [Google Scholar]
- Mollahosseini, A.; Chan, D.; Mahoor, M.H. Going deeper in facial expression recognition using deep neural networks. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–10. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Fan, Y.; Lam, J.C.; Li, V.O. Multi-region ensemble convolutional neural network for facial expression recognition. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Cham, Switzerland, 2018; pp. 84–94. [Google Scholar]
- Georgescu, M.I.; Ionescu, R.T.; Popescu, M. Local learning with deep and handcrafted features for facial expression recognition. IEEE Access 2019, 7, 64827–64836. [Google Scholar] [CrossRef]
- Rajan, S.; Chenniappan, P.; Devaraj, S.; Madian, N. Novel deep learning model for facial expression recognition based on maximum boosted CNN and LSTM. IET Image Process. 2020, 14, 1373–1381. [Google Scholar] [CrossRef]
- Khaireddin, Y.; Chen, Z. Facial emotion recognition: State of the art performance on FER2013. arXiv 2021, arXiv:2105.03588. [Google Scholar]
- Wang, Z.; Zeng, F.; Liu, S.; Zeng, B. OAENet: Oriented attention ensemble for accurate facial expression recognition. Pattern Recognit. 2021, 112, 107694. [Google Scholar] [CrossRef]
- Ruder, S. An overview of multi-task learning in deep neural networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Ming, Z.; Xia, J.; Luqman, M.M.; Burie, J.C.; Zhao, K. Dynamic multi-task learning for face recognition with facial expression. arXiv 2019, arXiv:1911.03281. [Google Scholar]
- Serengil, S.I.; Ozpinar, A. HyperExtended LightFace: A Facial Attribute Analysis Framework. In Proceedings of the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Qi, H. Age progression/regression by conditional adversarial autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5810–5818. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Kollias, D. ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit Detection & Multi-Task Learning Challenges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, New Orleans, LA, USA, 18–24 June 2022; pp. 2328–2336. [Google Scholar]
- Huang, Y.; Khan, S.M. Dyadgan: Generating facial expressions in dyadic interactions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 June 2017; pp. 11–18. [Google Scholar]
- Yang, H.; Ciftci, U.; Yin, L. Facial expression recognition by de-expression residue learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2168–2177. [Google Scholar]
- Wu, R.; Zhang, G.; Lu, S.; Chen, T. Cascade EF-GAN: Progressive Facial Expression Editing with Local Focuses. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Liu, Y.; Zhang, X.; Li, Y.; Zhou, J.; Li, X.; Zhao, G. Graph-based facial affect analysis: A review. IEEE Trans. Affect. Comput. 2022, 14, 2657–2677. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef]
- Liao, L.; Zhu, Y.; Zheng, B.; Jiang, X.; Lin, J. FERGCN: Facial expression recognition based on graph convolution network. Mach. Vis. Appl. 2022, 33, 40. [Google Scholar] [CrossRef]
- Wu, C.; Chai, L.; Yang, J.; Sheng, Y. Facial expression recognition using convolutional neural network on graphs. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 7572–7576. [Google Scholar]
- Wasi, A.T.; Šerbetar, K.; Islam, R.; Rafi, T.H.; Chae, D.K. ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning. arXiv 2023, arXiv:2305.01486. [Google Scholar]
- Perveen, N.; Gupta, S.; Verma, K. Facial expression recognition system using statistical feature and neural network. Int. J. Comput. Appl. 2012, 48, 17–23. [Google Scholar] [CrossRef]
- Meng, D.; Peng, X.; Wang, K.; Qiao, Y. Frame Attention Networks for Facial Expression Recognition in Videos. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3866–3870. [Google Scholar] [CrossRef]
- Hasani, B.; Mahoor, M.H. Facial Expression Recognition Using Enhanced Deep 3D Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Kervadec, C.; Vielzeuf, V.; Pateux, S.; Lechervy, A.; Jurie, F. Cake: Compact and accurate k-dimensional representation of emotion. arXiv 2018, arXiv:1807.11215. [Google Scholar]
- Hayale, W.; Negi, P.; Mahoor, M. Facial expression recognition using deep siamese neural networks with a supervised loss function. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–7. [Google Scholar]
- Zhang, T.; Zheng, W.; Cui, Z.; Zong, Y.; Li, Y. Spatial–temporal recurrent neural network for emotion recognition. IEEE Trans. Cybern. 2018, 49, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Salmam, F.Z.; Madani, A.; Kissi, M. Emotion recognition from facial expression based on fiducial points detection and using neural network. Int. J. Electr. Comput. Eng. 2018, 8, 52. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Yeom, S.; Lee, G.S.; Yang, H.J.; Na, I.S.; Kim, S.H. Facial emotion recognitionusing an ensemble of multi-level convolutional neural networks. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1940015. [Google Scholar] [CrossRef]
- Vulpe-Grigoras¸i, A.; Grigore, O. Convolutional neural network hyperparameters optimization for facial emotion recognition. In Proceedings of the 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 25–27 March 2021; pp. 1–5. [Google Scholar]
- Pecoraro, R.; Basile, V.; Bono, V. Local multi-head channel self-attention for facial expression recognition. Information 2022, 13, 419. [Google Scholar] [CrossRef]
- Burkert, P.; Trier, F.; Afzal, M.Z.; Dengel, A.; Liwicki, M. Dexpression: Deep convolutional neural network for expression recognition. arXiv 2015, arXiv:1509. 05371. [Google Scholar]
- Hasani, B.; Mahoor, M.H. Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 790–795. [Google Scholar]
- Zhao, X.; Liang, X.; Liu, L.; Li, T.; Han, Y.; Vasconcelos, N.; Yan, S. Peak-piloted deep network for facial expression recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 425–442. [Google Scholar]
- Yu, Z.; Liu, Q.; Liu, G. Deeper cascaded peak-piloted network for weak expression recognition. Vis. Comput. 2018, 34, 1691–1699. [Google Scholar] [CrossRef]
- Kuo, C.M.; Lai, S.H.; Sarkis, M. A Compact Deep Learning Model for Robust Facial Expression Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Kollias, D.; Cheng, S.; Ververas, E.; Kotsia, I.; Zafeiriou, S. Deep Neural Network Augmentation: Generating Faces for Affect Analysis. Int. J. Comput. Vis. 2020, 128, 1455–1484. [Google Scholar] [CrossRef]
- Vo, T.H.; Lee, G.S.; Yang, H.J.; Kim, S.H. Pyramid with super resolution for in-the-wild facial expression recognition. IEEE Access 2020, 8, 131988–132001. [Google Scholar] [CrossRef]
- Psaroudakis, A.; Kollias, D. MixAugment & Mixup: Augmentation Methods for Facial Expression Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2367–2375. [Google Scholar]
- Zhang, Y.; Wang, C.; Deng, W. Relative Uncertainty Learning for Facial Expression Recognition. Adv. Neural Inf. Process. Syst. 2021, 34, 17616–17627. [Google Scholar]
- Zhou, H.; Meng, D.; Zhang, Y.; Peng, X.; Du, J.; Wang, K.; Qiao, Y. Exploring emotion features and fusion strategies for audio-video emotion recognition. In Proceedings of the 2019 International Conference on Multimodal Interaction, Suzhou, China, 14–18 October 2019; pp. 562–566. [Google Scholar]
- Kumar, V.; Rao, S.; Yu, L. Noisy student training using body language dataset improves facial expression recognition. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 756–773. [Google Scholar]
- Adrian, R. Deep Learning for Computer Vision with Python Volume 1; Pyimage-Search. 2017. Available online: https://bayanbox.ir/view/5130918188419813120/Adrian-Rosebrock-Deep-Learning-for.pdf (accessed on 1 February 2023).
- Cheng, S.; Kotsia, I.; Pantic, M.; Zafeiriou, S. 4dfab: A large scale 4d database for facial expression analysis and biometric applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5117–5126. [Google Scholar]
- Sun, N.; Tao, J.; Liu, J.; Sun, H.; Han, G. 3-D Facial Feature Reconstruction and Learning Network for Facial Expression Recognition in the Wild. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 298–309. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Jiang, Y.G.; Ye, H.; Xue, X. Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification. In Proceedings of the 23rd ACM International Conference on Multimedia, New York, NY, USA, 26–30 October 2015; pp. 461–470. [Google Scholar] [CrossRef]
- Dang, C.N.; Moreno-García, M.N.; De la Prieta, F. Hybrid deep learning models for sentiment analysis. Complexity 2021, 2021, 9986920. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ward, R.D.; Ingleby, M. Automated classification and recognition of facial expressions using infrared thermal imaging. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December; 2004; Volume 1, pp. 202–206. [Google Scholar]
A/A | Dataset | Emotions | Year | Subjects | Samples | Origin | Resolution | Category |
---|---|---|---|---|---|---|---|---|
1 | FER+ [71] | 8 | 2016 | N/A | 35,887 images | N/A Microsoft | 48 × 48 | IU |
2 | JAFFE [72,73] | 7 | 1998 | 10 | 213 static images | Japan | 256 × 256 | IC |
3 | BU-3DFE [74,75] | 7 | 2006 | 100 | 2500 images | USA | 512 × 512 | IC |
4 | CK+ [76,77,78] | 7 | 2000 | 123 | 593 image sequences | USA | 640 × 490 | SC |
5 | Yale [79] | 6 | 2017 | 11 | 165 images | California, USA | 168 × 192 | IC |
6 | AFEW 7.0 [80,81,82] | 7 | 2011 | 330 | 1809 videos | Canberra, Australia | N/A | SC |
7 | AffectNet [83] | 7 | 2017 | N/A | 450,000 images | USA | 256 × 256 | IU |
8 | SFEW 2.0 [84,85] | 7 | 2015 | N/A | 1766 images | Canberra, Australia | 720 × 576 | IC |
9 | FER2013 [86] | 7 | 2013 | N/A | 35,887 images | Canada/USA | 48 × 48 | IU |
10 | TFD [87] | 7 | 2010 | N/A | 112,234 images | Toronto, Canada | 32 × 32 | IC |
11 | Oulu-CASIA [88] | 6 | 2009 | 80 | 2880 image sequences | Finland/China | 320 × 240 | SC |
12 | RAFD [89] | 8 | 2010 | 67 | 1608 images | Netherlands | 1024 × 681 | IC |
13 | KDEF [90,91] | 7 | 2018 | 70 | 4900 images | Sweden | 562 × 762 | IC |
14 | Emotion Net [92,93] | 6 | 2016 | N/A | 950,000 images | Ohio, USA | Web images | IU |
15 | RAF-DB [94] | 7 | 2017 | N/A | 29,672 images | Netherlands | N/A | IC |
16 | ExpW [95] | 7 | 2018 | N/A | 91,793 images | Honk Kong | Web images | IU |
17 | Multi-Pie [96] | 6 | 2009 | 337 | 755,370 images | USA | 400 × 400 | IC |
18 | MMI [97,98] | 6 | 2002 | 75 | 740 images and 2900 videos | Netherlands | 720 × 576 | IC&SC |
19 | MUG [99,100] | 7 | 2010 | 86 | 1462 sequences | Greece | 896 × 896 | SC |
20 | Emotic [101,102] | 26 | 2019 | 34.320 | 23,751 images | N/A | N/A | IU |
21 | Aff-Wild2 [103] | 7 | 2018 | 258 | 1,413,000 images and 260 videos | UK/Finland | 1454 × 890 | IU&SU |
22 | CalD3r & MenD3s [129] | 7 | 2023 | 104 + 92 | 4678 images + 4038 images | Southern Europe/Brazil | 1454 × 890 | IC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopalidis, T.; Solachidis, V.; Vretos, N.; Daras, P. Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information 2024, 15, 135. https://doi.org/10.3390/info15030135
Kopalidis T, Solachidis V, Vretos N, Daras P. Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information. 2024; 15(3):135. https://doi.org/10.3390/info15030135
Chicago/Turabian StyleKopalidis, Thomas, Vassilios Solachidis, Nicholas Vretos, and Petros Daras. 2024. "Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets" Information 15, no. 3: 135. https://doi.org/10.3390/info15030135
APA StyleKopalidis, T., Solachidis, V., Vretos, N., & Daras, P. (2024). Advances in Facial Expression Recognition: A Survey of Methods, Benchmarks, Models, and Datasets. Information, 15(3), 135. https://doi.org/10.3390/info15030135