Quantum Computing and Machine Learning on an Integrated Photonics Platform
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Objective and Scope of the Review
- Discuss the current state of research in quantum computing and machine learning;
- Present case studies and experimental results that demonstrate the potential to integrate quantum computing;
- Examine the challenges and opportunities associated with integrating these technologies;
- Outline future directions and open research questions in this rapidly evolving field.
1.3. Organization of the Review
- Section 2 provides an overview of the quantum mechanics principles and QC basics, including quantum superposition, quantum entanglement, quantum measurements, qubit, quantum gates and circuits and quantum algorithms and complexity;
- Section 3 provides an overview of quantum algorithms and complexity in terms of quantum machine learning and quantum optimization algorithms;
- Section 4 introduces the fundamental devices in integrated quantum photonic and typical quantum operations;
- Section 5 explores state-of-the-art chip-based quantum computing approaches and techniques;
- Section 6 highlights challenges and open issues in chip-based quantum computing, including quantum limitations and resource constraints, noise and error mitigations, model and data heterogeneity, standardization, interoperability and ethics and legal considerations;
- Section 7 outlines future directions and open research questions, such as quantum circuit optimization;
- Section 8 concludes the review by summarizing its key points and discussing the potential impact of quantum-assist computing in the field of machine learning.
2. Quantum Mechanics Principles and Quantum Computing Basics
2.1. Quantum Mechanics Principles
2.2. Quantum Computing Basics
2.3. Quantum Computing with Linear Optics
3. Quantum Machine Learning
3.1. Quantum Neural Networks
3.2. Variational Quantum Classifier
- Data encoding: The classical data are encoded into a quantum state using a quantum feature map. This process translates the input features into a higher-dimensional Hilbert space, where quantum effects can be exploited for classification;
- Variational circuit: The parameterized quantum circuit, often referred to as the ansatz, processes the encoded quantum data. The circuit’s parameters are adjusted through the optimization process to minimize the cost function;
- Measurement: The output of the variational circuit is measured, collapsing the quantum state into a classical probability distribution. This measurement provides the predictions for the input data.
- Optimization: A classical optimization algorithm, such as gradient descent, is used to update the parameters of the variational circuit based on the cost function. This iterative process continues until the cost function converges to a minimum value, which signifies the best possible classification performance;
- Evaluation: Once the optimal parameters are found, the VQC can be evaluated on unseen data for classification tasks. Overall, the research on VQC has provided insights into the theoretical foundations and practical applications of this algorithmic approach. VQC is frequently utilized to build a QNN, which is a counterpart to the conventional neural network.
3.3. Quantum Convolutional Neural Networks (QCNN)
3.4. Quantum Long Short-Term Memory
3.5. Quantum Generative Adversarial Network (QGAN)
3.6. Quantum Transfer Learning
3.7. Quantum Reinforcement Learning
3.8. Hybrid Classical–Quantum Neural Network
4. Integrated Quantum Photonic Platforms
4.1. Fundamental Devices
4.1.1. Waveguides
4.1.2. Beam Splitters
4.1.3. Phase Shifters
4.1.4. Modulator
4.1.5. Coupler
4.2. Main Components
4.2.1. Photon Source
4.2.2. Manipulation
4.2.3. Single-Photon Detector
5. Recent Advances in Chip-Based Quantum-Assist Computational Works
6. Challenges and Open Issues
6.1. Quantum Hardware Limitations and Resource Constraints
- (1)
- Limited qubits:
- a.
- Scalability: Scaling up the number of qubits in a quantum computer is a significant challenge due to the need for error correction and fault tolerance;
- b.
- System size: The limited number of qubits impacts the size and complexity of quantum federated learning algorithms that can be executed, hindering the ability to solve larger problems;
- c.
- Resource-efficient algorithms: Designing quantum algorithms that are resource-efficient in terms of qubits; gates can help mitigate these limitations.
- (2)
- Coherence time:
- a.
- Quantum gate operations: The short coherence time limits the number of quantum gate operations that can be performed before the quantum state becomes decoherent, impacting the complexity of quantum federated learning algorithms;
- b.
- Qubit materials and designs: Investigating novel qubit materials and designs that exhibit longer coherence times can help overcome the limitations posed by decoherence in quantum computations;
- c.
- Environmental noise: Reducing the impact of environmental noise on quantum hardware can help extend coherence times and improve the performance of quantum algorithms;
- d.
- Dynamical decoupling: Exploring dynamical decoupling techniques, which involve applying a sequence of control pulses to mitigate the effects of noise, can contribute to the preservation of quantum states during computations.
- (3)
- Connectivity:
- a.
- Topology: Quantum hardware architectures may have different qubit connectivity topologies, which can impact the performance of quantum algorithms, including quantum federated learning;
- b.
- Hardware-aware algorithms: Developing hardware-aware algorithms that consider qubit connectivity can help optimize the implementation of quantum federated learning on various quantum devices.
6.2. Noise and Error Mitigation
- (1)
- Error correction:
- a.
- Fault-tolerant quantum computation: Developing fault-tolerant quantum computation techniques, which allow for the execution of quantum algorithms despite the presence of errors, is crucial for the practical implementation of quantum federated learning;
- b.
- Resource overhead reduction: Investigating methods to reduce the resource overhead associated with quantum error correction, such as optimized encoding schemes and error-correction-friendly quantum circuit designs, can enable the efficient integration of error correction into quantum federated learning algorithms.
- (2)
- Error-aware training:
- a.
- Noise extrapolation: Techniques such as Richardson extrapolation and zero-noise extrapolation can be used to estimate and mitigate the impact of noise on quantum federated learning algorithms;
- b.
- Error-aware training: Developing error-aware training techniques that incorporate noise models into the learning process can help enhance the performance of quantum federate learning algorithms in noisy environments.
7. Open Opportunities and Future Directions
- (1)
- Higher Integration Technologies:
- a.
- Increased complexity: Developing more complex integrated photonics circuits with higher component counts to enable advanced functionalities;
- b.
- Multi-functional chips: Designing chips that serve multiple purposes, integrating various components on a single platform.
- (2)
- Novel Materials and Components with Explorative New Materials: Researching novel materials with unique optical properties to enhance device performance. In addition, it is possible to explore the implementation of heterogeneous integrated photonic chips based on multiple material systems;
- (3)
- Machine Learning Assistance Using machine learning technologies: Combining machine learning algorithms with integrated optical devices can improve the performance of quantum machines.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Wright, K.; Beck, K.M.; Debnath, S.; Amini, J.; Nam, Y.; Grzesiak, N.; Chen, J.S.; Pisenti, N.; Chmielewski, M.; Collins, C.; et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 2019, 10, 5464. [Google Scholar] [CrossRef]
- Kielpinski, D.; Monroe, C.; Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 2002, 417, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; Wilhelm, F.K. Superconducting quantum bits. Nature 2008, 453, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Asavanant, W.; Shiozawa, Y.; Yokoyama, S.; Charoensombutamon, B.; Emura, H.; Alexander, R.N.; Takeda, S.; Yoshikawa, J.I.; Menicucci, N.C.; Yonezawa, H.; et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 2019, 366, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Guo, X.; Breum, C.R.; Neergaard-Nielsen, J.S.; Andersen, U.L. Deterministic generation of a two-dimensional cluster state. Science 2019, 366, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Kruse, R.; Hamilton, C.S.; Sansoni, L.; Barkhofen, S.; Silberhorn, C.; Jex, I. Detailed study of Gaussian boson sampling. Phys. Rev. A 2019, 100, 032326. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Verdon, G.; Huang, H.Y.; Cincio, L.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef]
- Lanyon, B.P.; Whitfield, J.D.; Gillett, G.G.; Goggin, M.E.; Almeida, M.P.; Kassal, I.; Biamonte, J.D.; Mohseni, M.; Powell, B.J.; Barbieri, M.; et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2010, 2, 106–111. [Google Scholar] [CrossRef]
- Abrams, D.S.; Lloyd, S. Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 1997, 79, 2586. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L. A brief introduction to quantum algorithms. CCF Trans. High Perform. Comput. 2022, 4, 53–62. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Verstraete, F.; Wolf, M.M.; Ignacio Cirac, J. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 2009, 5, 633–636. [Google Scholar] [CrossRef]
- Zhonglin, B. Quantum-Mechanical Description of Physical Reality Shall Be Considered Complete. Int. J. Phys. 2022, 10, 174–181. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef]
- Davies, E. Information and quantum measurement. IEEE Trans. Inf. Theory 1978, 24, 596–599. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. phys 2018, 21, 6–7. [Google Scholar]
- Vos, J. Quantum Computing in Action; Simon and Schuster: New York, NY, USA, 2022. [Google Scholar]
- Hayashi, M.; Ishizaka, S.; Kawachi, A.; Kimura, G.; Ogawa, T. Introduction to Quantum Information Science; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhong, Y.; Chang, H.S.; Bienfait, A.; Dumur, É.; Chou, M.H.; Conner, C.R.; Grebel, J.; Povey, R.G.; Yan, H.; Schuster, D.I.; et al. Deterministic multi-qubit entanglement in a quantum network. Nature 2021, 590, 571–575. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282–286. [Google Scholar] [CrossRef]
- O’brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Wang, X.L.; Cai, X.D.; Su, Z.E.; Chen, M.C.; Wu, D.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015, 518, 516–519. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Yamamoto, T.; Koashi, M.; Imoto, N. Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate. Phys. Rev. A 2005, 71, 030301. [Google Scholar] [CrossRef]
- Ralph, T.C.; Langford, N.K.; Bell, T.; White, A. Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 2002, 65, 062324. [Google Scholar] [CrossRef]
- Hofmann, H.F.; Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 2002, 66, 024308. [Google Scholar] [CrossRef]
- Vigliar, C.; Paesani, S.; Ding, Y.; Adcock, J.C.; Wang, J.; Morley-Short, S.; Bacco, D.; Oxenløwe, L.K.; Thompson, M.G.; Rarity, J.G.; et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 2021, 17, 1137–1143. [Google Scholar] [CrossRef]
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202. [Google Scholar] [CrossRef]
- Oh, S.; Choi, J.; Kim, J. A tutorial on quantum convolutional neural networks (QCNN). In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 236–239. [Google Scholar]
- Chen, S.Y.C.; Yoo, S.; Fang, Y.L.L. Quantum long short-term memory. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 8622–8626. [Google Scholar]
- Adler, T.; Erhard, M.; Krenn, M.; Brandstetter, J.; Kofler, J.; Hochreiter, S. Quantum Optical Experiments Modeled by Long Short-Term Memory. Photonics 2021, 8, 535. [Google Scholar] [CrossRef]
- Lloyd, S.; Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 2018, 121, 040502. [Google Scholar] [CrossRef] [PubMed]
- Dallaire-Demers, P.L.; Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 2018, 98, 012324. [Google Scholar] [CrossRef]
- Mari, A.; Bromley, T.R.; Izaac, J.; Schuld, M.; Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 2020, 4, 340. [Google Scholar] [CrossRef]
- Jerbi, S.; Gyurik, C.; Marshall, S.; Briegel, H.; Dunjko, V. Parametrized quantum policies for reinforcement learning. Adv. Neural Inf. Process. Syst. 2021, 34, 28362–28375. [Google Scholar]
- Wu, S.; Jin, S.; Wen, D.; Han, D.; Wang, X. Quantum reinforcement learning in continuous action space. arXiv 2020, arXiv:2012.10711. [Google Scholar]
- Zhao, C.; Gao, X.S. Qdnn: Deep neural networks with quantum layers. Quantum Mach. Intell. 2021, 3, 15. [Google Scholar] [CrossRef]
- Arthur, D. A hybrid quantum-classical neural network architecture for binary classification. arXiv 2022, arXiv:2201.01820. [Google Scholar]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Arunachalam, S.; Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 2021, 17, 1013–1017. [Google Scholar] [CrossRef]
- Blance, A.; Spannowsky, M. Quantum machine learning for particle physics using a variational quantum classifier. J. High Energy Phys. 2021, 2021, 212. [Google Scholar] [CrossRef]
- Dunjko, V.; Taylor, J.M.; Briegel, H.J. Advances in quantum reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 282–287. [Google Scholar]
- Dong, D.; Chen, C.; Li, H.; Tarn, T.J. Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2008, 38, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Politi, A.; Cryan, M.J.; Rarity, J.G.; Yu, S.; O’Brien, J.L. Silica-on-Silicon Waveguide Quantum Circuits. Science 2008, 320, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Fu, Z.; Pramanik, T.; Mao, J.; Chi, Y.; Cao, Y.; Zhai, C.; Mao, Y.; Dai, T.; Chen, X.; et al. Very-large-scale integrated quantum graph photonics. Nat. Photonics 2023, 17, 573–581. [Google Scholar] [CrossRef]
- Takesue, H.; Tokura, Y.; Fukuda, H.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Itabashi, S.i. Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 2007, 91, 201108. [Google Scholar] [CrossRef]
- Bonneau, D.; Engin, E.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 2012, 14, 045003. [Google Scholar] [CrossRef]
- Silverstone, J.W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; et al. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 2014, 8, 104–108. [Google Scholar] [CrossRef]
- Pernice, W.H.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.; Sergienko, A.; Tang, H. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 2012, 3, 1325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Feng, L.T.; Zhou, Z.Y.; Chen, Y.; Wu, H.; Li, M.; Gao, S.M.; Guo, G.P.; Guo, G.C.; Dai, D.X.; et al. Generation of multiphoton quantum states on silicon. Light Sci. Appl. 2019, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shao, L.; Zhang, S.X.; Yi, X.; Wiersig, J.; Wang, L.; Gong, Q.; Lončar, M.; Yang, L.; Xiao, Y.F. Chaos-assisted broadband momentum transformation in optical microresonators. Science 2017, 358, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cao, Q.T.; Wang, Z.; Liu, Y.x.; Qiu, C.W.; Yang, L.; Gong, Q.; Xiao, Y.F. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 2019, 13, 21–24. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Chen, Y.; Feng, L.T.; Yan, L.; Zhang, Q.; Bao, J.; Liu, B.H.; Ren, X.F.; Wang, J.; et al. On-chip path encoded photonic quantum Toffoli gate. Photonics Res. 2022, 10, 1533–1542. [Google Scholar] [CrossRef]
- Lu, X. Chip-integrated visible-telecom entangled photon pair source for quantum communication. In Proceedings of the Photonics for Quantum 2019, New York, NY, USA, 23–25 January 2019; SPIE: Bellingham, WA, USA, 2021; Volume 11917, p. 119170Z. [Google Scholar]
- Zhang, X.; Bell, B.A.; Mahendra, A.; Xiong, C.; Leong, P.H.W.; Eggleton, B.J. Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 2018, 43, 3469–3472. [Google Scholar] [CrossRef]
- Höpker, J.P.; Bartnick, M.; Meyer-Scott, E.; Thiele, F.; Krapick, S.; Montaut, N.; Santandrea, M.; Herrmann, H.; Lengeling, S.; Ricken, R.; et al. Towards integrated superconducting detectors on lithium niobate waveguides. arXiv 2017, arXiv:1708.06232. [Google Scholar]
- Jin, H.; Liu, F.M.; Xu, P.; Xia, J.L.; Zhong, M.L.; Yuan, Y.; Zhou, J.W.; Gong, Y.X.; Wang, W.; Zhu, S.N. On-Chip Generation and Manipulation of Entangled Photons Based on Reconfigurable Lithium-Niobate Waveguide Circuits. Phys. Rev. Lett. 2014, 113, 103601. [Google Scholar] [CrossRef]
- Politi, A.; Matthews, J.C.F.; O’Brien, J.L. Shor’s Quantum Factoring Algorithm on a Photonic Chip. Science 2009, 325, 1221. [Google Scholar] [CrossRef]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum walks of correlated photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef]
- Laing, A.; Peruzzo, A.; Politi, A.; Verde, M.R.; Halder, M.; Ralph, T.C.; Thompson, M.G.; O’Brien, J.L. High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 2010, 97, 211109. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Brod, D.J.; Galvao, E.F.; Spagnolo, N.; Vitelli, C.; Maiorino, E.; Mataloni, P.; Sciarrino, F. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 2013, 7, 545–549. [Google Scholar] [CrossRef]
- Arcari, M.; Söllner, I.; Javadi, A.; Hansen, S.L.; Mahmoodian, S.; Liu, J.; Thyrrestrup, H.; Lee, E.H.; Song, J.D.; Stobbe, S.; et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 2014, 113, 093603. [Google Scholar] [CrossRef] [PubMed]
- Ciampini, M.A.; Orieux, A.; Paesani, S.; Sciarrino, F.; Corrielli, G.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 2016, 5, e16064. [Google Scholar] [CrossRef]
- Spring, J.B.; Mennea, P.L.; Metcalf, B.J.; Humphreys, P.C.; Gates, J.C.; Rogers, H.L.; Söller, C.; Smith, B.J.; Kolthammer, W.S.; Smith, P.G.; et al. Chip-based array of near-identical, pure, heralded single-photon sources. Optica 2017, 4, 90–96. [Google Scholar] [CrossRef]
- Wang, J.; Bonneau, D.; Villa, M.; Silverstone, J.W.; Santagati, R.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 2016, 3, 407–413. [Google Scholar] [CrossRef]
- Sibson, P.; Erven, C.; Godfrey, M.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al. Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [Google Scholar] [CrossRef]
- Carolan, J.; Harrold, C.; Sparrow, C.; Martín-López, E.; Russell, N.J.; Silverstone, J.W.; Shadbolt, P.J.; Matsuda, N.; Oguma, M.; Itoh, M.; et al. Universal linear optics. Science 2015, 349, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, C.; Martín-López, E.; Maraviglia, N.; Neville, A.; Harrold, C.; Carolan, J.; Joglekar, Y.N.; Hashimoto, T.; Matsuda, N.; O’Brien, J.L.; et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 2018, 557, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Paesani, S.; Ding, Y.; Santagati, R.; Skrzypczyk, P.; Salavrakos, A.; Tura, J.; Augusiak, R.; Mančinska, L.; Bacco, D.; et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 2018, 360, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Paesani, S.; Ding, Y.; Santagati, R.; Chakhmakhchyan, L.; Vigliar, C.; Rottwitt, K.; Oxenløwe, L.K.; Wang, J.; Thompson, M.G.; Laing, A. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 2019, 15, 925–929. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, L.; Paesani, S.; Laing, A.; Shi, Y.; Cai, H.; Luo, X.; Lo, G.Q.; Kwek, L.C.; Liu, A.Q. Encoding Error Correction in an Integrated Photonic Chip. PRX Quantum 2023, 4, 030340. [Google Scholar] [CrossRef]
- Ren, R.J.; Lu, Y.H.; Jiang, Z.K.; Gao, J.; Zhou, W.H.; Wang, Y.; Jiao, Z.Q.; Wang, X.W.; Solntsev, A.S.; Jin, X.M. Topologically protecting squeezed light on a photonic chip. Photonics Res. 2022, 10, 456–464. [Google Scholar] [CrossRef]
- Poot, M.; Schuck, C.; Song Ma, X.; Guo, X.; Tang, H.X. Design and characterization of integrated components for SiN photonic quantum circuits. Opt. Express 2016, 24, 6843–6860. [Google Scholar] [CrossRef]
- Sheng, Z.; Wang, Z.; Qiu, C.; Li, L.; Pang, A.; Wu, A.; Wang, X.; Zou, S.; Gan, F. A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photonics J. 2012, 4, 2272–2277. [Google Scholar] [CrossRef]
- Ding, Y.; Ou, H.; Peucheret, C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Opt. Lett. 2013, 38, 1227–1229. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Chen, D.; He, X.; Han, Y.; Zhang, J.; Zhang, Z. Ultra-compact broadband polarization beam splitter with strong expansibility. Photon. Res. 2018, 6, 574–578. [Google Scholar] [CrossRef]
- Ren, G.; Chen, S.; Cheng, Y.; Zhai, Y. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber. Opt. Commun. 2011, 284, 4782–4788. [Google Scholar] [CrossRef]
- Wang, J.; Xuan, Y.; Lee, C.; Niu, B.; Liu, L.; Liu, G.N.; Qi, M. Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Taillaert, D.; Chong, H.; Borel, P.I.; Frandsen, L.H.; De La Rue, R.M.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef]
- Sun, P.; Van Vaerenbergh, T.; Hooten, S.; Beausoleil, R. Adjoint optimization of polarization-splitting grating couplers. Opt. Express 2023, 31, 4884–4898. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kuyken, B.; Roelkens, G.; Baets, R.; Osgood, R.M., Jr.; Green, W.M. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics 2012, 6, 667. [Google Scholar] [CrossRef]
- Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 2020, 11, 2505. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhu, S. Quasi-phase-matching engineering of entangled photons. AIP Adv. 2012, 2, 053807. [Google Scholar] [CrossRef]
- Signorini, S.; Pavesi, L. On-chip heralded single photon sources. AVS Quantum Sci. 2020, 2, 041701. [Google Scholar] [CrossRef]
- Kultavewuti, P.; Zhu, E.Y.; Xing, X.; Qian, L.; Pusino, V.; Sorel, M.; Aitchison, J.S. Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Sci. Rep. 2017, 7, 5785. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, F.; Kwiat, P.G. High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 2019, 5, eaaw8586. [Google Scholar] [CrossRef]
- Collins, M.J.; Xiong, C.; Rey, I.H.; Vo, T.D.; He, J.; Shahnia, S.; Reardon, C.; Krauss, T.F.; Steel, M.; Clark, A.S.; et al. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 2013, 4, 2582. [Google Scholar] [CrossRef]
- Reck, M.; Zeilinger, A.; Bernstein, H.J.; Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 1994, 73, 58–61. [Google Scholar] [CrossRef]
- Clements, W.R.; Humphreys, P.C.; Metcalf, B.J.; Kolthammer, W.S.; Walmsley, I.A. Optimal design for universal multiport interferometers. Optica 2016, 3, 1460–1465. [Google Scholar] [CrossRef]
- Qiang, X.; Zhou, X.; Wang, J.; Wilkes, C.M.; Loke, T.; O’Gara, S.; Kling, L.; Marshall, G.D.; Santagati, R.; Ralph, T.C.; et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 2018, 12, 534–539. [Google Scholar] [CrossRef]
- Steinbrecher, G.R.; Olson, J.P.; Englund, D.; Carolan, J. Quantum optical neural networks. Npj Quantum Inf. 2019, 5, 60. [Google Scholar] [CrossRef]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.H.; Zhou, X.Q.; Love, P.J.; Aspuru-Guzik, A.; O’brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Aihara, K.; Leleu, T.; Kawarabayashi, K.i.; Kako, S.; Fejer, M.; Inoue, K.; Takesue, H. Coherent Ising machines—optical neural networks operating at the quantum limit. NPJ Quantum Inf. 2017, 3, 49. [Google Scholar] [CrossRef]
- Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; Larochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, M.; Jiang, X.; Thompson, J.; Cai, H.; Paesani, S.; Santagati, R.; Laing, A.; Zhang, Y.; Yung, M.; et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 2021, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Sitzmann, V.; Dun, X.; Heidrich, W.; Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 2018, 8, 12324. [Google Scholar] [CrossRef]
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-optical machine learning using diffractive deep neural networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zou, J.; Zhang, H.; Shi, Y.; Luo, S.; Wang, N.; Cai, H.; Wan, L.; Wang, B.; Jiang, X.; et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 2022, 13, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Thompson, J.; Gu, M.; Jiang, X.D.; Cai, H.; Liu, P.Y.; Shi, Y.; Zhang, Y.; Karim, M.F.; Lo, G.Q.; et al. Efficient On-Chip Training of Optical Neural Networks Using Genetic Algorithm. ACS Photonics 2021, 8, 1662–1672. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, L.; Haug, T.; Mok, W.; Kim, M.S.; Kwek, L.C.; Liu, A.Q. On-Chip Quantum Autoencoder for Teleportation of High-Dimensional Quantum States. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15–20 May 2022; pp. 1–2. [Google Scholar]
- Lau, J.; Zhang, H.; Wan, L.; Shi, L.; Lee, C.K.; Kwek, L.; Liu, A. Predicting Molecular Properties Using Photonic Chip-Based Machine Learning Approach. In Proceedings of the 2022 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 15–20 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–2. [Google Scholar]
- Lin, H.; Zhang, H.; Wan, L.; Karim, M.; Cai, H.; Kwek, L.; Liu, A. Quantum Photonic Chip for Binary Classification of Financial Data. In Proceedings of the 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 13–17 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–2. [Google Scholar]
- Aaronson, S.; Arkhipov, A. The Computational Complexity of Linear Optics. In Proceedings of the STOC’11, Forty-Third Annual ACM Symposium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011; pp. 333–342. [Google Scholar] [CrossRef]
- Clifford, P.; Clifford, R. The Classical Complexity of Boson Sampling. In Proceedings of the SODA’18, Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–10 January 2018; pp. 146–155. [Google Scholar]
- Giordani, T.; Flamini, F.; Pompili, M.; Viggianiello, N.; Spagnolo, N.; Crespi, A.; Osellame, R.; Wiebe, N.; Walschaers, M.; Buchleitner, A.; et al. Experimental statistical signature of many-body quantum interference. Nat. Photonics 2018, 12, 173–178. [Google Scholar] [CrossRef]
- Carolan, J.; Meinecke, J.D.; Shadbolt, P.J.; Russell, N.J.; Ismail, N.; Wörhoff, K.; Rudolph, T.; Thompson, M.G.; O’brien, J.L.; Matthews, J.C.; et al. On the experimental verification of quantum complexity in linear optics. Nat. Photonics 2014, 8, 621–626. [Google Scholar] [CrossRef]
- Spagnolo, N.; Vitelli, C.; Bentivegna, M.; Brod, D.J.; Crespi, A.; Flamini, F.; Giacomini, S.; Milani, G.; Ramponi, R.; Mataloni, P.; et al. Experimental validation of photonic boson sampling. Nat. Photonics 2014, 8, 615–620. [Google Scholar] [CrossRef]
- Broome, M.A.; Fedrizzi, A.; Rahimi-Keshari, S.; Dove, J.; Aaronson, S.; Ralph, T.C.; White, A.G. Photonic Boson Sampling in a Tunable Circuit. Science 2013, 339, 794–798. [Google Scholar] [CrossRef]
- Tillmann, M.; Dakić, B.; Heilmann, R.; Nolte, S.; Szameit, A.; Walther, P. Experimental boson sampling. Nat. Photonics 2013, 7, 540–544. [Google Scholar] [CrossRef]
- Spring, J.B.; Metcalf, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.M.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson Sampling on a Photonic Chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef]
- Zhu, H.H.; Chen, H.S.; Li, S.Y.; Chen, T.; Cai, H.; Chin, L.P.; Zhang, X.D.; Liu, A.Q. A Gaussian Boson Sampling for Graph Computation. In Proceedings of the CLEO: QELS_Fundamental Science, Washington, DC, USA, 7–12 May 2023; Optica Publishing Group: Washington, DC, USA, 2023; p. FM3A.1. [Google Scholar] [CrossRef]
- Wan, L.; Zhu, H.; Wang, B.; Zhang, H.; Kwek, L.C.; Liu, A.Q. A Boson Sampling Chip for Graph Perfect Matching. In Proceedings of the CLEO: QELS_Fundamental Science 2022, San Jose, CA, USA, 15–20 May 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. FF2I.6. [Google Scholar] [CrossRef]
- Schuld, M.; Brádler, K.; Israel, R.; Su, D.; Gupt, B. Measuring the similarity of graphs with a Gaussian boson sampler. Phys. Rev. A 2020, 101, 032314. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bromley, T.R. Using Gaussian Boson Sampling to Find Dense Subgraphs. Phys. Rev. Lett. 2018, 121, 030503. [Google Scholar] [CrossRef] [PubMed]
- Brádler, K.; Dallaire-Demers, P.L.; Rebentrost, P.; Su, D.; Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 2018, 98, 032310. [Google Scholar] [CrossRef]
- Huh, J.; Guerreschi, G.G.; Peropadre, B.; McClean, J.R.; Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photonics 2015, 9, 615–620. [Google Scholar] [CrossRef]
- Banchi, L.; Fingerhuth, M.; Babej, T.; Ing, C.; Arrazola, J.M. Molecular docking with Gaussian boson sampling. Sci. Adv. 2020, 6, eaax1950. [Google Scholar] [CrossRef]
- Paesani, S.; Gentile, A.A.; Santagati, R.; Wang, J.; Wiebe, N.; Tew, D.P.; O’Brien, J.L.; Thompson, M.G. Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. Phys. Rev. Lett. 2017, 118, 100503. [Google Scholar] [CrossRef]
- Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A.A.; Wiebe, N.; Petruzzella, M.; O’brien, J.L.; Rarity, J.G.; Laing, A.; et al. Experimental quantum Hamiltonian learning. Nat. Phys. 2017, 13, 551–555. [Google Scholar] [CrossRef]
- Santagati, R.; Wang, J.; Gentile, A.A.; Paesani, S.; Wiebe, N.; McClean, J.R.; Morley-Short, S.; Shadbolt, P.J.; Bonneau, D.; Silverstone, J.W.; et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 2018, 4, eaap9646. [Google Scholar] [CrossRef]
Algorithms | References | Applications | Platform |
---|---|---|---|
Quantum Convolutional Neural Networks | [9,34] | MNIST calssification | TensorFlow |
Quantum Long Short-Term Memory | [35,36] | Damped harmonic oscillator, MELVIN dataset | PyTorch |
Quantum Generative Adversarial Network | [37,38] | Shorfactoring, decryption | Strawberry Fields |
Quantum Transfer Learning | [39] | Image classification, quantum state classification | Strawberry Fields, TensorFlow |
Quantum Reinforcement Learning | [40,41] | Quantum state generation, eigenvalue problem | TensorFlow |
Hybrid Classical–Quantum Neural Network | [42,43] | Binary classification | Strawberry Fields, TensorFlow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Lin, H.; Wu, S.; Luo, W.; Zhang, H.; Zhan, Y.; Wang, X.; Liu, A.; Kwek, L.C. Quantum Computing and Machine Learning on an Integrated Photonics Platform. Information 2024, 15, 95. https://doi.org/10.3390/info15020095
Zhu H, Lin H, Wu S, Luo W, Zhang H, Zhan Y, Wang X, Liu A, Kwek LC. Quantum Computing and Machine Learning on an Integrated Photonics Platform. Information. 2024; 15(2):95. https://doi.org/10.3390/info15020095
Chicago/Turabian StyleZhu, Huihui, Hexiang Lin, Shaojun Wu, Wei Luo, Hui Zhang, Yuancheng Zhan, Xiaoting Wang, Aiqun Liu, and Leong Chuan Kwek. 2024. "Quantum Computing and Machine Learning on an Integrated Photonics Platform" Information 15, no. 2: 95. https://doi.org/10.3390/info15020095
APA StyleZhu, H., Lin, H., Wu, S., Luo, W., Zhang, H., Zhan, Y., Wang, X., Liu, A., & Kwek, L. C. (2024). Quantum Computing and Machine Learning on an Integrated Photonics Platform. Information, 15(2), 95. https://doi.org/10.3390/info15020095