Simulation-Enhanced MQAM Modulation Identification in Communication Systems: A Subtractive Clustering-Based PSO-FCM Algorithm Study
Abstract
:1. Introduction
2. Signal Model
3. Methodology
3.1. Signal-to-Noise-Ratio-Based Subtractive Clustering Algorithm (SN-SC)
Algorithm 1 SN-SC Algorithm | |
Step | Operation |
Input: x, λ, SNR | |
Output: z | |
Initialization | |
cl = 1, Flag = 0 | |
1 | |
for i = 1:N | |
2 | |
end | |
3 | , |
while Flag = 0 | |
4 | for each i data point |
5 | |
6 | repeat step 3 |
7 | if , |
8 | return |
3.2. Proposed Integration of PSO and FCM Algorithms
3.2.1. FCM
3.2.2. PSO
3.2.3. Problem
3.2.4. PSO-FCM
Algorithm 2 PSO-FCM algorithm |
Input: , m, , , , . |
Initialization |
, |
For each particle |
Calculate the of particle. |
Repeat until iterations are reached |
Update and . |
Calculate the membership |
Update the of the particle; |
If |
; |
Update ; |
if |
. |
Decode to obtain cluster centers . |
3.3. Modulation Order Identification Using Circle Radius Ratio
4. Simulations Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.K.; Erçelebi, E. An M-QAM signal modulation recognition algorithm in AWGN channel. Sci. Program. 2019, 6752694. [Google Scholar] [CrossRef]
- Azzouz, E.E.; Nandi, A.K. Automatic identification of digital modulation types. Signal Process. 1995, 47, 55–69. [Google Scholar] [CrossRef]
- Abdelbar, M.; Tranter, W.H.; Bose, T. Cooperative cumulants-based modulation classification in distributed networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 446–461. [Google Scholar] [CrossRef]
- Xu, J.L.; Su, W.; Zhou, M. Likelihood-ratio approaches to automatic modulation classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 41, 455–469. [Google Scholar] [CrossRef]
- Hashim, I.A.; Sadah, J.W.A.; Saeed, T.R.; Ali, J.K. Recognition of QAM signals with low SNR using a combined threshold algorithm. IETE J. Res. 2015, 61, 65–71. [Google Scholar] [CrossRef]
- Mobasseri, B.G. Constellation shape as a robust signature for digital modulation recognition. In Proceedings of the IEEE Conference on Military Communications MILCOM 1999, Atlantic City, NJ, USA, 31 October–3 November 1999; pp. 442–446. [Google Scholar]
- Mobasseri, B.G. Digital modulation classification using constellation shape. Signal Process. 2000, 80, 251–277. [Google Scholar] [CrossRef]
- Yin, C.; Li, B.; Li, Y.; Lan, B. Modulation classification of MQAM signals based on density spectrum of the constellations. In Proceedings of the 2010 2nd International Conference on Future Computer and Communication ICFCC 2010, Wuhan, China, 21–24 May 2010; Volume 3, pp. 57–61. [Google Scholar]
- Fuchs, C.; Spolaor, S.; Nobile, M.S.; Kaymak, U. A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 23–26 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zha, Y.; Wang, H.; Shen, Z.; Shi, Y.; Shu, F. Intelligent identification technology for high-order digital modulation signals under low signal-to-noise ratio conditions. IET Signal Process. 2023, 17, e12189. [Google Scholar] [CrossRef]
- Jajoo, G.; Kumar, Y.; Yadav, S.K. Blind signal PSK/QAM recognition using clustering analysis of constellation signature in flat fading channel. IEEE Commun. Lett. 2019, 23, 1853–1856. [Google Scholar] [CrossRef]
- Lu, F.; Shi, Z.; Su, R. Communication signal modulation mechanism based on artificial feature engineering deep neural network modulation identifier. Wirel. Commun. Mob. Comput. 2021, 9988651. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, S. Communication modulation recognition method based on clustering algorithm. J. Phys. Conf. Ser. 2021, 1827, 012153. [Google Scholar] [CrossRef]
- Askari, S. Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development. Expert Syst. Appl. 2021, 165, 113856. [Google Scholar] [CrossRef]
- Li, G.; Qin, X.; Liu, H.; Jiang, K.; Wang, A. Modulation Recognition of Digital Signal Using Graph Feature and Improved K-Means. Electronics 2022, 11, 3298. [Google Scholar] [CrossRef]
- Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two Decades. Arch. Comput. Methods Eng. 2022, 30, 1663–1725. [Google Scholar] [CrossRef]
- Ying, L.; Ning, L. Improved change detection method for flood monitoring. J. Radars 2017, 6, 204–212. [Google Scholar]
- Kao, Y.; Chen, M.H.; Hsieh, K.M. Combining PSO and FCM for dynamic fuzzy clustering problems. In Proceedings of the Swarm Intelligence Based Optimization: First International Conference, ICSIBO 2014, Mulhouse, France, 13–14 May 2014; Revised Selected Papers. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 1, pp. 1–8. [Google Scholar]
- Ezugwu, A.E.S.; Agbaje, M.B.; Aljojo, N.; Els, R.; Chiroma, H.; Elaziz, M.A. A comparative performance study of hybrid firefly algorithms for automatic data clustering. IEEE Access 2020, 8, 121089–121118. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
Algorithms | Parameters | Values |
---|---|---|
SN-SC | 1 | |
1.5 | ||
0.4 | ||
N | 3000 | |
PSO | , | 1.5 |
Q | 30 | |
1.1, 0.5 | ||
300 | ||
FCM | m | 2 |
W | 2 |
Type | 0 dB | 2 dB | 4 dB | 6 dB | 8 dB | 10 dB | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#3 | #3 | #3 | #3 | |||||||||||||||
4QAM | 2.9 | 13.1 | 4.9 | 3.8 | 12.6 | 4 | 4 | 11.9 | 4 | 4 | 5.9 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
8QAM | 6.8 | 14.5 | 6.2 | 7.6 | 15.4 | 6.2 | 7.9 | 14.2 | 6.5 | 8 | 10.2 | 6.8 | 8 | 8 | 7.2 | 8 | 8 | 8 |
16QAM | 13.6 | 18.9 | 7.6 | 15.2 | 16 | 9.1 | 15.8 | 16 | 10.2 | 16 | 16 | 11.8 | 16 | 16 | 12.8 | 16 | 16 | 14.5 |
32QAM | 19.4 | 19.8 | 8.3 | 23.8 | 22.1 | 8.8 | 27.4 | 24.8 | 10.2 | 30.5 | 27.8 | 11.6 | 31.6 | 29.9 | 12.2 | 32 | 31.7 | 12.5 |
64QAM | 23.5 | 23.5 | 10.2 | 26.6 | 26.4 | 12.1 | 29.9 | 27.7 | 12.8 | 33.1 | 29.2 | 12.8 | 45.8 | 32.1 | 13.1 | 63.6 | 33.9 | 13.3 |
Modulation Type | No. Classification | Method | No. Local Optima |
---|---|---|---|
8QAM | 8 | FCM | 10 |
PSO-FCM | 5 (3.3%) | ||
16QAM | 16 | FCM | |
PSO-FCM | 9 (6.0%) | ||
32QAM | 32 | FCM | |
PSO-FCM | 73 (48.7%) | ||
64QAM | 64 | FCM | |
PSO-FCM | 121 (80.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, Z.; Zhang, H.; Luo, J.; Sun, H. Simulation-Enhanced MQAM Modulation Identification in Communication Systems: A Subtractive Clustering-Based PSO-FCM Algorithm Study. Information 2024, 15, 42. https://doi.org/10.3390/info15010042
Quan Z, Zhang H, Luo J, Sun H. Simulation-Enhanced MQAM Modulation Identification in Communication Systems: A Subtractive Clustering-Based PSO-FCM Algorithm Study. Information. 2024; 15(1):42. https://doi.org/10.3390/info15010042
Chicago/Turabian StyleQuan, Zhi, Hailong Zhang, Jiyu Luo, and Haijun Sun. 2024. "Simulation-Enhanced MQAM Modulation Identification in Communication Systems: A Subtractive Clustering-Based PSO-FCM Algorithm Study" Information 15, no. 1: 42. https://doi.org/10.3390/info15010042
APA StyleQuan, Z., Zhang, H., Luo, J., & Sun, H. (2024). Simulation-Enhanced MQAM Modulation Identification in Communication Systems: A Subtractive Clustering-Based PSO-FCM Algorithm Study. Information, 15(1), 42. https://doi.org/10.3390/info15010042