TrainAR: An Open-Source Visual Scripting-Based Authoring Tool for Procedural Mobile Augmented Reality Trainings
Abstract
:1. Introduction
1.1. Current Challenges in Educational AR
1.2. Creating AR Content
2. Related Work
2.1. AR Authoring Tools in Education
2.2. Visual Scripting for AR Authoring Tools
3. The TrainAR Framework Components
3.1. TrainAR: From the Interaction Concept and the Didactic Concept towards an AR Authoring Tool
3.2. Components of TrainAR from a Technical Perspective
3.2.1. Onboarding & Assembly Placement
3.2.2. TrainAR Objects and Procedural Chains of Actions
3.2.3. Instructions, Insights, and Feedback
4. The TrainAR Authoring Tool
4.1. Design Considerations for the TrainAR Authoring Tool
4.2. Open-Source Availability and Documentation
4.3. Envisioned Workflow for Authoring TrainAR Trainings
4.4. Content Generation through 3D Scanning and Natural Language Prompts
4.5. Beyond TrainARs Statemachine: Expanding on the TrainAR Framework
5. Utilization and Evaluation
- Do TrainAR trainings elicit learning benefits (e.g., increased retention, conceptual understanding, or motivation, or providing self-paced learning opportunities)?
- Are TrainAR trainings usable by and enjoyable for the trainee?
- Is the TrainAR Authoring Tool usable by non-programmers to create such TrainAR trainings? More specifically,
- (a)
- What is the required level of media competency, and who can realistically utilize the TrainAR authoring tool?
- (b)
- How fast can the usage of the tool be learned, and what training or tutorial material is necessary?
6. Utility and Usability of TrainAR Trainings
6.1. Preparation of a Tocolytic Injection
6.2. German–Latin Denomination of the Female Pelvis
6.3. MARLabs Titration Experiment
6.4. Exploration of Fruit Ripeness and Sourness
7. Usability of the TrainAR Authoring Tool
7.1. Pre-Study and Non-Representative Observations
7.2. Systematic Usability Study Design
7.3. Setup and Procedure
7.4. Participants
7.5. Results
7.5.1. Task Completion Times
7.5.2. Task Completion Rates
7.5.3. Perceived Cognitive Load
7.5.4. Perceived Usability
7.5.5. Qualitative Feedback
7.5.6. Self-Assessment: Independently Creating a TrainAR Training
8. Discussion
8.1. Evaluations of TrainAR Trainings
8.2. Evaluation of the TrainAR Authoring Tool
8.3. In-The-Wild Testing Approach & Ongoing Evaluations
9. Conclusions
Current & Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
VR | Virtual Reality |
MR | Mixed Reality |
HMD | Head-mounted Device |
UI | User Interface |
SUS | System Usability Scale |
TCT | Task Completion Time |
TCR | Task Completion Rate |
CS | Computer Science |
MT | Media Technology |
MRTK | Mixed Reality Toolkit |
References
- Santos, M.E.C.; Taketomi, T.; Yamamoto, G.; Rodrigo, M.M.T.; Sandor, C.; Kato, H. Augmented reality as multimedia: The case for situated vocabulary learning. Res. Pract. Technol. Enhanc. Learn. 2016, 11, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, M.; Sahin, C.; Arcagok, S.; Demir, M.K. The effect of augmented reality applications in the learning process: A meta-analysis study. Eurasian J. Educ. Res. 2018, 18, 165–186. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.M.; Teixeira, J.M.X.; Cavalcante, P.S.; Teichrieb, V. Perspectives on how to evaluate augmented reality technology tools for education: A systematic review. J. Braz. Comput. Soc. 2019, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Quintero, J.; Baldiris, S.; Rubira, R.; Cerón, J.; Velez, G. Augmented reality in educational inclusion. A systematic review on the last decade. Front. Psychol. 2019, 10, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojciechowski, R.; Cellary, W. Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Comput. Educ. 2013, 68, 570–585. [Google Scholar] [CrossRef]
- Buabeng-Andoh, C. Factors influencing teachersâ adoption and integration of information and communication technology into teaching: A review of the literature. Int. J. Educ. Dev. Using Inf. Commun. Technol. (IJEDICT) 2012, 8, 136–155. [Google Scholar]
- Wu, H.K.; Lee, S.W.Y.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Tzima, S.; Styliaras, G.; Bassounas, A. Augmented reality applications in education: Teachers point of view. Educ. Sci. 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Saforrudin, N.; Zaman, H.B.; Ahmad, A. Technical skills in developing augmented reality application: Teachers’ readiness. In Proceedings of the International Visual Informatics Conference, Selangor, Malaysia, 9–11 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 360–370. [Google Scholar] [CrossRef]
- Cubillo, J.; Martin, S.; Castro, M.; Boticki, I. Preparing augmented reality learning content should be easy: UNED ARLE—An authoring tool for augmented reality learning environments. Comput. Appl. Eng. Educ. 2015, 23, 778–789. [Google Scholar] [CrossRef]
- Schmalstieg, D.; Langlotz, T.; Billinghurst, M. Augmented Reality 2.0. In Virtual Realities; Springer: Berlin/Heidelberg, Germany, 2011; pp. 13–37. [Google Scholar] [CrossRef]
- Hampshire, A.; Seichter, H.; Grasset, R.; Billinghurst, M. Augmented reality authoring: Generic context from programmer to designer. In Proceedings of the 18th Australia Conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments, New York, NY, USA, 20–24 November 2006; pp. 409–412. [Google Scholar] [CrossRef]
- Nebeling, M.; Speicher, M. The trouble with augmented reality/virtual reality authoring tools. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 333–337. [Google Scholar] [CrossRef]
- Ashtari, N.; Bunt, A.; McGrenere, J.; Nebeling, M.; Chilana, P.K. Creating augmented and virtual reality applications: Current practices, challenges, and opportunities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 25–30 April 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Nebeling, M. Playing the Tricky Game of Toolkits Research. In Proceedings of the Workshop on HCI. Tools at CHI, Denver, CO, USA, 6–11 May 2017. [Google Scholar]
- Kiesler, N.; Schiffner, D. On the lack of recognition of software artifacts and it infrastructure in educational technology research. In 20. Fachtagung Bildungstechnologien (DELFI); Gesellschaft für Informatik e.V.: Bonn, Germany, 2022; pp. 201–206. [Google Scholar] [CrossRef]
- Blattgerste, J.; Luksch, K.; Lewa, C.; Pfeiffer, T. TrainAR: A Scalable Interaction Concept and Didactic Framework for Procedural Trainings Using Handheld Augmented Reality. Multimodal Technol. Interact. 2021, 5, 30. [Google Scholar] [CrossRef]
- Dünser, A.; Walker, L.; Horner, H.; Bentall, D. Creating interactive physics education books with augmented reality. In Proceedings of the 24th Australian Computer-Human Interaction Conference, Melbourne, Australia, 26–30 November 2012; pp. 107–114. [Google Scholar] [CrossRef]
- Liarokapis, F.; Mourkoussis, N.; White, M.; Darcy, J.; Sifniotis, M.; Petridis, P.; Basu, A.; Lister, P.F. Web3D and augmented reality to support engineering education. World Trans. Eng. Technol. Educ. 2004, 3, 11–14. [Google Scholar]
- Laine, T.H.; Nygren, E.; Dirin, A.; Suk, H.J. Science Spots AR: A platform for science learning games with augmented reality. Educ. Technol. Res. Dev. 2016, 64, 507–531. [Google Scholar] [CrossRef] [Green Version]
- Blattgerste, J.; Renner, P.; Pfeiffer, T. Authorable augmented reality instructions for assistance and training in work environments. In Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia, Pisa, Italy, 26–29 November 2019; pp. 1–11. [Google Scholar] [CrossRef]
- Blattgerste, J.; Pfeiffer, T. Promptly authored Augmented Reality instructions can be sufficient to enable cognitively impaired workers. In Proceedings of the GI VR/AR Workshop. Gesellschaft für Informatik eV, online, 24–25 September 2020. [Google Scholar] [CrossRef]
- Escobedo, L.; Tentori, M.; Quintana, E.; Favela, J.; Garcia-Rosas, D. Using augmented reality to help children with autism stay focused. IEEE Pervasive Comput. 2014, 13, 38–46. [Google Scholar] [CrossRef]
- Lytridis, C.; Tsinakos, A.; Kazanidis, I. ARTutor—An augmented reality platform for interactive distance learning. Educ. Sci. 2018, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Maloney, J.; Resnick, M.; Rusk, N.; Silverman, B.; Eastmond, E. The scratch programming language and environment. ACM Trans. Comput. Educ. (TOCE) 2010, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.; Shapiro, R.B.; de Halleux, J.; Ball, T. ARcadia: A rapid prototyping platform for real-time tangible interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Not, E.; Petrelli, D. Empowering cultural heritage professionals with tools for authoring and deploying personalised visitor experiences. User Model. User-Adapt. Interact. 2019, 29, 67–120. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.M.; Ruiz-Rube, I.; Dodero, J.M.; Arnedillo-Sánchez, I. Augmented reality mobile app development for all. Comput. Electr. Eng. 2018, 65, 250–260. [Google Scholar] [CrossRef]
- Apaza-Yllachura, Y.; Paz-Valderrama, A.; Corrales-Delgado, C. SimpleAR: Augmented Reality high-level content design framework using visual programming. In Proceedings of the 2019 38th International Conference of the Chilean Computer Science Society (SCCC), Concepcion, Chile, 4–9 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Jung, K.; Dang, T. BlocklyAR: A Visual Programming Interface for Creating Augmented Reality Experiences. Electronics 2020, 9, 1205. [Google Scholar] [CrossRef]
- Castillo, R.I.B.; Sánchez, V.G.C.; Villegas, O.O.V.; Lozoya, A.L. Node based visual editor for mobile augmented reality. Int. J. Comb. Optim. Probl. Inform. 2016, 7, 35–48. [Google Scholar]
- Groenendyk, M. Cataloging the 3D web: The availability of educational 3D models on the internet. Libr. Hi Tech. 2016, 34, 239–258. [Google Scholar] [CrossRef]
- Jain, A.; Mildenhall, B.; Barron, J.T.; Abbeel, P.; Poole, B. Zero-shot text-guided object generation with dream fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 867–876. [Google Scholar]
- Technologies, U. Unity Visual Scripting Package. Available online: https://docs.unity3d.com/Packages/[email protected]/manual/index.html (accessed on 13 February 2023).
- Blattgerste, J.; Luksch, K.; Lewa, C.; Kunzendorf, M.; Bauer, N.H.; Bernloehr, A.; Joswig, M.; Schäfer, T.; Pfeiffer, T. Project Heb@ AR: Exploring handheld Augmented Reality training to supplement academic midwifery education. In DELFI 2020–Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik eV; Gesellschaft für Informatik e.V.: Bonn, Germany, 2020; pp. 103–108. [Google Scholar]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usability Stud. 2009, 4, 114–123. [Google Scholar]
- Lewis, J.R.; Sauro, J. Item benchmarks for the system usability scale. J. Usability Stud. 2018, 13, 158–167. [Google Scholar]
- Tullis, T.; Stetson, J. A Comparison of Questionnaires for Assessing Website Usability. In Proceedings of the Usability Professional Association Conference 1, Minneapolis, MN, USA, 7–11 June 2004. [Google Scholar]
- Blattgerste, J.; Franssen, J.; Arztmann, M.; Pfeiffer, T. Motivational benefits and usability of a handheld Augmented Reality game for anatomy learning. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), online, 12–14 December 2022; pp. 266–274. [Google Scholar] [CrossRef]
- Domínguez Alfaro, J.L.; Gantois, S.; Blattgerste, J.; De Croon, R.; Verbert, K.; Pfeiffer, T.; Van Puyvelde, P. Mobile Augmented Reality Laboratory for Learning Acid–Base Titration. J. Chem. Educ. 2022, 99, 531–537. [Google Scholar] [CrossRef]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An empirical evaluation of the system usability scale. Int. J. Hum.-Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Arztmann, M.; Domínguez Alfaro, J.L.; Blattgerste, J.; Jeuring, J.A. Marie’s ChemLab: A Mobile Augmented Reality Game to Teach Basic Chemistry to Children and Van Puyvelde, Peter. In Proceedings of the ECGBL 2022, Lusófona, Portugal, 6–7 October 2022; Academic Conferences and Publishing International: New York, NY, USA, 2022; pp. 65–72. [Google Scholar]
- Putnam, C.; Puthenmadom, M.; Cuerdo, M.A.; Wang, W.; Paul, N. Adaptation of the System Usability Scale for User Testing with Children. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Blattgerste, J.; Behrends, J.; Pfeiffer, T. A Web-Based Analysis Toolkit for the System Usability Scale. In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 237–246. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar] [CrossRef]
- Brooke, J. SUS: A quick and dirty usability scale. Usability Eval. Ind. 1995, 189, 4–7. [Google Scholar] [CrossRef]
- Salvador, G.F.D.; Bota, P.J.; Vinayagamoorthy, V.; Plácido da Silva, H.; Fred, A. Smartphone-Based Content Annotation for Ground Truth Collection in Affective Computing. In Proceedings of the ACM International Conference on Interactive Media Experiences, Virtual, 21–23 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 199–204. [Google Scholar] [CrossRef]
- Corazza, F.; Snijders, D.; Arpone, M.; Stritoni, V.; Martinolli, F.; Daverio, M.; Losi, M.G.; Soldi, L.; Tesauri, F.; Da Dalt, L.; et al. Development and Usability of a Novel Interactive Tablet App (PediAppRREST) to Support the Management of Pediatric Cardiac Arrest: Pilot High-Fidelity Simulation-Based Study. JMIR Mhealth Uhealth 2020, 8, e19070. [Google Scholar] [CrossRef]
- Dumas, J.S.; Dumas, J.S.; Redish, J. A practical Guide to Usability Testing; Intellect Books: Bristol, UK, 1999. [Google Scholar]
TrainAR Scenario | Interaction Concept | Didactic Framework | Authoring Tool |
---|---|---|---|
(1) Preparation of a Tocolytic Injection | √ | √ | |
(2) Denominating the Female Pelvis | √ | √ | |
(3) Conduction of a Titration Experiment | √ | √ | √ |
(4) Exploring Chemical Reactions | √ | √ | |
(5) Understanding Fruit Ripeness | √ | √ |
Help/Hint | Computer Science | Media Technology | Non-Technical |
---|---|---|---|
Authoring Task 1 | |||
No Help | 81.90% (SD = 23.00) | 80.00% (SD = 18.00) | 64.00% (SD = 26.00) |
Docu Hint | 9.90% (SD = 12.00) | 11.00% (SD = 13.00) | 12.00% (SD = 10.00) |
Solution Hint | 4.50% (SD = 8.70) | 3.60% (SD = 4.60) | 16.00% (SD = 15.00) |
Explicit Help | 3.60% (SD = 8.70) | 5.40% (SD = 4.60) | 8.10% (SD = 6.60) |
Authoring Task 2 | |||
No Help | 96.00% (SD = 7.80) | 98.00% (SD = 0.00) | 92.00% (SD = 9.00) |
Docu Hint | 1.50% (SD = 3.40) | 1.00% (SD = 3.20) | 1.00% (SD = 3.20) |
Solution Hint | 0.50% (SD = 1.60) | 1.00% (SD = 3.20) | 6.70% (SD = 5.90) |
Explicit Help | 1.90% (SD = 6.00) | 0.00% (SD = 0.00) | 0.50% (SD = 1.60) |
Authoring Task 3 | |||
No Help | 93.00% (SD = 9.70) | 91.00% (SD = 9.50) | 82.00% (SD = 10.00) |
Docu Hint | 2.00% (SD = 4.40) | 3.40% (SD = 4.70) | 1.40% (SD = 3.00) |
Solution Hint | 2.70% (SD = 4.60) | 2.70% (SD = 4.60) | 6.80% (SD = 6.30) |
Explicit Help | 2.70% (SD = 8.50) | 2.70% (SD = 6.50) | 10.00% (SD = 9.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blattgerste, J.; Behrends, J.; Pfeiffer, T. TrainAR: An Open-Source Visual Scripting-Based Authoring Tool for Procedural Mobile Augmented Reality Trainings. Information 2023, 14, 219. https://doi.org/10.3390/info14040219
Blattgerste J, Behrends J, Pfeiffer T. TrainAR: An Open-Source Visual Scripting-Based Authoring Tool for Procedural Mobile Augmented Reality Trainings. Information. 2023; 14(4):219. https://doi.org/10.3390/info14040219
Chicago/Turabian StyleBlattgerste, Jonas, Jan Behrends, and Thies Pfeiffer. 2023. "TrainAR: An Open-Source Visual Scripting-Based Authoring Tool for Procedural Mobile Augmented Reality Trainings" Information 14, no. 4: 219. https://doi.org/10.3390/info14040219
APA StyleBlattgerste, J., Behrends, J., & Pfeiffer, T. (2023). TrainAR: An Open-Source Visual Scripting-Based Authoring Tool for Procedural Mobile Augmented Reality Trainings. Information, 14(4), 219. https://doi.org/10.3390/info14040219