Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Outcomes
2.3. Predictors
2.4. Statistical Analysis
3. Results
3.1. Data Descriptions
3.2. Selection of Predictors by LASSO
3.3. Predictive Performance of Machine Learning Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Balmain, B.N.; Sabapathy, S.; Louis, M.; Morris, N.R. Aging and thermoregulatory control: The clinical implications of exercising under heat stress in older individuals. BioMed Res. Int. 2018, 2018, 8306154. [Google Scholar] [CrossRef] [PubMed]
- Corcuera Hotz, I.; Hajat, S. The effects of temperature on accident and emergency department attendances in London: A time-series regression analysis. Int. J. Environ. Res. Public Health 2020, 17, 1957. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.C.; Hsia, Y.F.; Hsu, N.Y.; Wang, Y.C.; Su, H.J. Cumulative effect of indoor temperature on cardiovascular disease-related emergency department visits among older adults in Taiwan. Sci. Total Environ. 2020, 731, 138958. [Google Scholar] [CrossRef]
- Jung, C.C.; Chen, N.T.; Hsia, Y.F.; Hsu, N.Y.; Su, H.J. Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People. Int. J. Environ. Res. Public Health 2021, 18, 5273. [Google Scholar] [CrossRef]
- Sahu, S.K.; Baffour, B.; Harper, P.R.; Minty, J.H.; Sarran, C. A hierarchical Bayesian model for improving short-term forecasting of hospital demand by including meteorological information. J. R. Stat. Soc. Ser. A Stat. Soc. 2014, 177, 39–61. [Google Scholar] [CrossRef]
- Marcilio, I.; Hajat, S.; Gouveia, N. Forecasting daily emergency department visits using calendar variables and ambient temperature readings. Acad. Emerg. Med. 2013, 20, 769–777. [Google Scholar] [CrossRef]
- Calegari, R.; Fogliatto, F.S.; Lucini, F.R.; Neyeloff, J.; Kuchenbecker, R.S.; Schaan, B.D. Forecasting daily volume and acuity of patients in the emergency department. Comput. Math. Methods Med. 2016, 2016, 3863268. [Google Scholar] [CrossRef]
- Chau, P.H.; Lau, K.K.; Qian, X.X.; Luo, H.; Woo, J. Visits to the accident and emergency department in hot season of a city with subtropical climate: Association with heat stress and related meteorological variables. Int. J. Biometeorol. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Moe, J.; O’Sullivan, F.; McGregor, M.J.; Schull, M.J.; Dong, K.; Holroyd, B.R.; Grafstein, E.; Hohl, C.M.; Trimble, J.; McGrail, K.M. Identifying subgroups and risk among frequent emergency department users in British Columbia. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12346. [Google Scholar] [CrossRef]
- Soril, L.J.; Leggett, L.E.; Lorenzetti, D.L.; Noseworthy, T.W.; Clement, F.M. Characteristics of frequent users of the emergency department in the general adult population: A systematic review of international healthcare systems. Health Policy 2016, 120, 452–461. [Google Scholar] [CrossRef]
- Berchet, C. Emergency Care Services: Trends, Drivers and Interventions to Manage the Demand; OECD Health Working Papers; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Chen, G.; Xie, J.; Li, W.; Li, X.; Hay Chung, L.C.; Ren, C.; Liu, X. Future “local climate zone” spatial change simulation in Greater Bay Area under the shared socioeconomic pathways and ecological control line. Build. Environ. 2021, 203, 108077. [Google Scholar] [CrossRef]
- Hertzum, M. Forecasting hourly patient visits in the emergency department to counteract crowding. Ergon. Open J. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Sudarshan, V.K.; Brabrand, M.; Range, T.M.; Wiil, U.K. Performance evaluation emergency department patient arrivals forecasting models by including meteorological and calendar information: A comparative study. Comput. Biol. Med. 2021, 135, 104541. [Google Scholar] [CrossRef]
- Lucini, F.R.; Dos Reis, M.A.; Da Silveira, G.J.C.; Fogliatto, F.S.; Anzanello, M.J.; Andrioli, G.G.; Nicolaidis, R.; Beltrame, R.C.F.; Neyeloff, J.L.; Schaan, B.D. Man vs. machine: Predicting hospital bed demand from an emergency department. PLoS ONE 2020, 15, e0237937. [Google Scholar] [CrossRef]
- Rahimian, F.; Salimi-Khorshidi, G.; Payberah, A.H.; Tran, J.; Ayala Solares, R.; Raimondi, F.; Nazarzadeh, M.; Canoy, D.; Rahimi, K. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records. PLoS Med. 2018, 15, e1002695. [Google Scholar] [CrossRef]
- Khatri, K.L.; Tamil, L.S. Early detection of peak demand days of chronic respiratory diseases emergency department visits using artificial neural networks. IEEE J. Biomed. Health Inform. 2017, 22, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wong, T.C.; Chin, K.S. Modeling daily patient arrivals at emergency epartment and quantifying the relative importance of contributing variables using artificial neural network. Decis. Support Syst. 2013, 54, 1488–1498. [Google Scholar] [CrossRef]
- Yucesan, M.; Gul, M.; Celik, E. A multi-method patient arrival forecasting outline for hospital emergency departments. Int. J. Healthc. Manag. 2020, 13, 283–295. [Google Scholar] [CrossRef]
- Hong Kong Observatory. Climate Change in Hong Kong. Available online: https://www.hko.gov.hk/en/climate_change/obs_hk_temp.htm (accessed on 12 August 2022).
- Wang, D.; Lau, K.K.L.; Ren, C.; Goggins, W.B.I.; Shi, Y.; Ho, H.C.; Lee, T.-C.; Lee, L.-S.; Woo, J.; Ng, E. The impact of extremely hot weather events on all-cause mortality in a highly urbanized and densely populated subtropical city: A 10-year time-series study (2006–2015). Sci. Total Environ. 2019, 690, 923–931. [Google Scholar] [CrossRef]
- Chan, E.Y.Y.; Goggins, W.B.; Kim, J.J.; Griffiths, S.; Ma, T.K. Help-seeking behavior during elevated temperature in Chinese population. J. Urban Health 2011, 88, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.Y.; Goggins, W.B.; Yue, J.S.; Lee, P. Hospital admissions as a function of temperature, other weather phenomena and pollution levels in an urban setting in China. Bull. World Health Organ. 2013, 91, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.W.; Tam, W.W.S.; Yu, I.T.S.; Lau, A.K.H.; Pang, S.W.; Wong, A.H. Developing a risk-based air quality health index. Atmos. Environ. 2013, 76, 52–58. [Google Scholar] [CrossRef]
- Van Loenhout, J.A.F.; Delbiso, T.D.; Kiriliouk, A.; Rodriguez-Llanes, J.M.; Segers, J.; Guha-Sapir, D. Heat and emergency room admissions in the Netherlands. BMC Public Health 2018, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Ebelt, S.T.; Newman, A.J.; Scovronick, N.; D’Souza, R.R.; Moss, S.E.; Warren, J.L.; Strickland, M.J.; Darrow, L.A.; Chang, H.H. Time-series analysis of daily ambient temperature and emergency department visits in five US cities with a comparison of exposure metrics derived from 1-km meteorology products. Environ. Health 2021, 20, 55. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Liu, T.; Rutherford, S.; Xu, Y.; Xu, X.; Wu, W.; Xiao, J.; Zeng, W.; Chu, C.; et al. Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China. PLoS ONE 2013, 8, e55280. [Google Scholar]
- Sun, Y.; Heng, B.H.; Seow, Y.T.; Seow, E. Forecasting daily attendances at an emergency department to aid resource planning. BMC Emerg. Med. 2009, 9, 1–9. [Google Scholar] [CrossRef]
- Adams, A.; Vamplew, P. Encoding and decoding cyclic data. South Pac. J. Nat. Sci. 1998, 16, 54–58. [Google Scholar]
- Vollmer, M.A.; Glampson, B.; Mellan, T.; Mishra, S.; Mercuri, L.; Costello, C.; Klaber, R.; Cooke, G.; Flaxman, S.; Bhatt, S. A unified machine learning approach to time series forecasting applied to demand at emergency departments. BMC Emerg. Med. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Chai, Y.; Luo, H.; Zhang, Q.; Cheng, Q.; Lui, C.S.; Yip, P.S. Developing an early warning system of suicide using Google Trends and media reporting. J. Affect. Disord. 2019, 255, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. The Python Language Reference Manual; Network Theory Ltd.: Godalming, UK, 2011. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Processing Syst. 2019, 32, 8026–8037. [Google Scholar]
- Ho, H.C.; Lau, K.K.; Ren, C.; Ng, E. Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong. Int. J. Biometeorol. 2017, 61, 1935–1944. [Google Scholar] [CrossRef]
- Chau, P.H.; Woo, J. The trends in excess mortality in winter vs. summer in a sub-tropical city and its association with extreme climate conditions. PLoS ONE 2015, 10, e0126774. [Google Scholar]
- Chau, P.H.; Yip, P.S.F.; Lau, E.H.Y.; Ip, Y.T.; Law, F.Y.W.; Ho, R.T.H.; Leung, A.Y.M.; Wong, J.Y.H.; Woo, J. Hot weather and suicide deaths among older adults in Hong Kong, 1976–2014: A retrospective study. Int. J. Environ. Res. Public Health 2020, 17, 3449. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The cost of dichotomising continuous variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Cahuantzi, R.; Chen, X.; Güttel, S. A comparison of LSTM and GRU networks for learning symbolic sequences. arXiv 2021, arXiv:2107.02248. [Google Scholar]
Female | Male | |||
---|---|---|---|---|
Ambient Temperature Variables | Extreme Hot Weather Indicators | Ambient Temperature Variables | Extreme Hot Weather Indicators | |
Max 2 | VHD 1 | Max 1 | VHD 1 | |
Max 8 | VHD 2 | Max 4 | VHD 3 | |
Max 10 | VHD 3 | Max 6 | VHD 4 | |
Max 11 | VHD 4 | Max 7 | VHD 5 | |
Max 12 | VHD 5 | Max 9 | VHD 6 | |
Max 13 | VHD 6 | Mean 2 | VHD 7 | |
Max 14 | VHD 7 | Min 6 | VHD 9 | |
Mean 6 | VHD 9 | Min 7 | VHD 11 | |
Min 1 | VHD 12 | Min 10 | VHD 13 | |
Min 12 | VHD 13 | Min 12 | HN 3 | |
Min 13 | VHD 14 | HN 4 | ||
HN 1 | HN 5 | |||
HN 2 | HN 6 | |||
HN 3 | HN 7 | |||
HN 6 | HN 8 | |||
HN 7 | HN 12 | |||
HN 11 | HN 14 | |||
HN 13 | ||||
HN 14 | ||||
Count | 11 | 19 | 10 | 17 |
Methods | ||||
---|---|---|---|---|
Groups | Metric | Model 1 | Model 2 | Model 3 |
Female | RMSE (10−5) | 8.53 | 8.44 | 8.68 |
NRMSE | 12.05% | 11.93% | 12.27% | |
Male | RMSE (10−5) | 9.04 | 8.87 | 9.20 |
NRMSE | 12.47% | 12.23% | 12.69% |
Methods | |||||||
---|---|---|---|---|---|---|---|
Groups | Metric | Linear Regression (Baseline) | Decision Tree | Random Forest | SVM | DNN | GRU |
Female | RMSE (10−5) | 8.44 | 11.24 | 9.18 | 21.62 | 8.30 | 7.98 |
NRMSE | 11.93% | 15.88% | 12.97% | 30.5% | 11.73% | 11.28% | |
Male | RMSE (10−5) | 8.87 | 11.66 | 10.23 | 20.41 | 8.75 | 8.52 |
NRMSE | 12.23% | 16.01% | 14.10% | 28.15% | 12.08% | 11.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Luo, H.; Lau, K.K.-L.; Qian, X.; Ren, C.; Chau, P. Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach. Information 2022, 13, 410. https://doi.org/10.3390/info13090410
Zhou H, Luo H, Lau KK-L, Qian X, Ren C, Chau P. Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach. Information. 2022; 13(9):410. https://doi.org/10.3390/info13090410
Chicago/Turabian StyleZhou, Huiquan, Hao Luo, Kevin Ka-Lun Lau, Xingxing Qian, Chao Ren, and Puihing Chau. 2022. "Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach" Information 13, no. 9: 410. https://doi.org/10.3390/info13090410
APA StyleZhou, H., Luo, H., Lau, K. K. -L., Qian, X., Ren, C., & Chau, P. (2022). Predicting Emergency Department Utilization among Older Hong Kong Population in Hot Season: A Machine Learning Approach. Information, 13(9), 410. https://doi.org/10.3390/info13090410