A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs
Abstract
:1. Introduction
- Proposing the FKG-Pairs3-based preeclampsia sign diagnosis model. This proposed model is used to quantify incomplete and vague information input data sets including qualitative and quantitative factors, quantified from doctor’s preferences.
- Applying FKG-Pairs3 for consideration of patient’s symptom pairs to approximate reasoning to find the output labels of new samples, matched with the class of classification in decision-making problems with incomplete information input data sets.
- Implementing the proposed model for the development of real-world applications using datasets collected from medical records in accordance with the preferences of doctors through a case study of preeclampsia sign diagnosis for support of traditional medicine inpatient medical records.
2. Research Background
2.1. Fuzzy Sets
2.2. Fuzzy Inference System
- Fuzzification: It is responsible for converting input values into language values.
- The knowledge base consists of two parts: The database (definition of fuzzy set membership functions used in fuzzy rules) and the set of rules (including IF-THEN structural fuzzy rules).
- Engine: Perform inference operations in the fuzzy rule base.
2.3. Knowledge Graph
2.4. Fuzzy Knowledge Graph
2.5. Approximate Reasoning and Decision Making
3. The Proposed Model for Preeclampsia Sign Diagnosis in Decision Making
3.1. Problem Statement
Output Labels | ||||||
---|---|---|---|---|---|---|
2 | ||||||
1 | ||||||
… | … | … | … | … | ||
1 | ||||||
3 | ||||||
Patients’ symptoms | } | } | } | } |
3.2. Proposed Model
3.2.1. The Preeclampsia Sign Diagnosis Proposed Model
3.2.2. The Steps to Implement the Application
- Conducting the data preprocessing.
- Applying the rule-generated mechanism (herein FIS or M-CFIS).
- Applying the cluster sampling method and splitting the dataset into two parts including the training set and testing set with rates of 70% and 30% respectively.
3.2.3. A numerical Example to Illustrate the Proposed Model
- With label , we have:
- With label , we have:
- With label , we have:
- With label ,
- With label ,
- With label ,
4. Experimental Results
4.1. Experiments
4.2. Evaluation Method
- TP: True Positive
- TN: True Negative
- FP: False Positive
- FN: False Negative
4.3. Test Results in Simulations
- Scenario 1: the systematic random sampling method and the splitting method with training set (70%) and testing set (30%).
- Scenario 2: the systematic random sampling method and the splitting method with training set (10%) and testing set (90%).
- Scenario 3: the systematic random sampling method and the splitting method with training set (5%) and testing set (95%).
5. Conclusions
- Firstly, with large input data sets, the computation time is high based on the traditional data set splitting method (e.g., in scenario 1).
- Secondly, with too-small training data sets, the accuracy is low (e.g., in scenario 2 and scenario 3).
6. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Recommendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Nguyen, T.H.; Bui, T.C.; Vo, T.M.; Tran, Q.M.; Luu, L.T.; Nguyen, T.D. Predictive value of the sFlt-1 and PlGF in women at risk for preeclampsia in the south of Vietnam. Pregnancy Hypertens 2018, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Masini, G.; Foo, L.F.; Tay, J.; Wilkinson, I.B.; Valensise, H.; Gyselaers, W.; Lees, C.C. Preeclampsia has two phenotypes which require different treatment strategies. Am. J. Obstet. Gynecol. 2021, 226, S1006–S1018. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Hypertension in Pregnancy: Executive Summary. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Syngelaki, A.; Akolekar, R.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal characteristics and medical history. Am. J. Obstet. Gynecol. 2015, 213, 62.e1–62.e10. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, e1–e25. [Google Scholar]
- SOGC guideline, Diagnosis, Evaluation, and Management of the Hypertensive Disoder of Pregnancy: Executive Summary. J. Obstet. Gynaecol. Can. 2014, 36, 416–438. [CrossRef]
- NICE. Hypertension in pregnancy: The management of hypertensive disorders during pregnancy. NICE Clin. Guidel 2019. No. 107. [Google Scholar]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef]
- Yu, T.; Li, J.; Yu, Q.; Tian, Y.; Shun, X.; Xu, L.; Zhu, L.; Gao, H. Knowledge graph for TCM health preservation: Design, construction, and applications. Artif. Intell. Med. 2017, 77, 48–52. [Google Scholar] [CrossRef]
- Gyrard, A.; Gaur, M.; Shekarpour, S.; Thirunarayan, K.; Sheth, A. Personalized health knowledge graph. In CEUR workshop proceedings; NIH Public Access: Bethesda, MD, USA, 2018; Volume 2317. [Google Scholar]
- Chai, X. Diagnosis Method of thyroid disease combining knowledge graph and deep learning. IEEE Access 2020, 8, 149787–149795. [Google Scholar] [CrossRef]
- Troussas, C.; Chrysafiadi, K.; Virvou, M. An intelligent adaptive fuzzy-based inference system for computer-assisted language learning. Expert Syst. Appl. 2019, 127, 85–96. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. J. Food Meas. Charact. 2020, 14, 1402–1416. [Google Scholar] [CrossRef]
- Tiwari, L.; Raja, R.; Sharma, V.; Miri, R. Fuzzy Inference System for Efficient Lung Cancer Detection. In Computer Vision and Machine Intelligence in Medical Image Analysis, Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 992. [Google Scholar] [CrossRef]
- Ortega, L.C.; Otero, L.D.; Otero, C. Fuzzy Inference System Framework to Prioritize the Deployment of Resources in Low Visibility Traffic Conditions. IEEE Access 2019, 7, 174368–174379. [Google Scholar] [CrossRef]
- Johann, G.; dos Santos, C.S.; Montanher, P.F.; de Oliveira, R.A.P.; Carniel, A.C. Fuzzy inference systems for predicting the mass yield in extractions of chia cake extract. Softw. Impacts 2021, 10, 100145. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Fuzzy Inference System Tree with Particle Swarm Optimization and Genetic Algorithm: A novel approach for PM10 forecasting. Expert Syst. Appl. 2021, 183, 115376. [Google Scholar] [CrossRef]
- Man, J.Y.; Chen, Z.; Dick, S. Towards inductive learning of complex fuzzy inference systems. In Proceedings of the NAFIPS 2007: 2007 Annual Meeting of the North American Fuzzy Information Processing Society, San Diego, CA, USA, 24–27 June 2007; pp. 415–420. [Google Scholar] [CrossRef]
- Tu, C.H.; Li, C. Multiple Function Approximation-A New Approach Using Complex Fuzzy Inference System. In Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10751. [Google Scholar]
- Ngan, T.T.; Lan, L.T.H.; Tuan, T.M.; Son, L.H.; Tuan, L.M.; Minh, N.H. Colorectal Cancer Diagnosis with Complex Fuzzy Inference System. In Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 2013. [Google Scholar] [CrossRef]
- Selvachandran, G.; Quek, S.G.; Lan, L.T.H.; Son, L.H.; Giang, N.L.; Ding, W.; Abdel-Basset, M.; de Albuquerque, V.H.C. A New Design of Mamdani Complex Fuzzy Inference System for Multiattribute Decision Making Problems. IEEE Trans. Fuzzy Syst. 2019, 29, 716–730. [Google Scholar] [CrossRef]
- Tuan, T.M.; Lan, L.T.H.; Chou, S.-Y.; Ngan, T.T.; Son, L.H.; Giang, N.L.; Ali, M. M-CFIS-R: Mamdani complex fuzzy inference system with rule reduction using complex fuzzy measures in granular computing. Mathematics 2020, 8, 707. [Google Scholar] [CrossRef]
- Lan, L.T.H.; Tuan, T.M.; Ngan, T.T.; Son, L.H.; Giang, N.L.; Ngoc, V.T.N.; Van Hai, P. A New Complex Fuzzy Inference System With Fuzzy Knowledge Graph and Extensions in Decision Making. IEEE Access 2020, 8, 164899–164921. [Google Scholar] [CrossRef]
- Long, C.K.; Van Hai, P.; Tuan, T.M.; Lan, L.T.H.; Chuan, P.M.; Son, L.H. A Novel Fuzzy Knowledge Graph Pairs Approach in Decision Making. Multimedia Tools Appl. 2022, 81, 26505–26534. [Google Scholar] [CrossRef]
- Sherimon, P.C.; Krishnan, R. OntoDiabetic: An Ontology-Based Clinical Decision Support System for Diabetic Patients. Arab. J. Sci. Eng. 2015, 41, 1145–1160. [Google Scholar] [CrossRef]
- Sweidan, S.; El-Sappagh, S.; El-Bakry, H.; Sabbeh, S.; Badria, F.A.; Kwak, K.-S. A Fibrosis Diagnosis Clinical Decision Support System Using Fuzzy Knowledge. Arab. J. Sci. Eng. 2018, 44, 3781–3800. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Ting, H.-N.; Moghavvemi, M. Formulation of a Novel Classification Indices for Classification of Human Hearing Abilities According to Cortical Auditory Event Potential signals. Arab. J. Sci. Eng. 2019, 44, 7133–7147. [Google Scholar] [CrossRef]
- Sudhan, M.; Sinthuja, M.; Raja, S.P.; Amutharaj, J.; Latha, G.C.P.; Rachel, S.S.; Anitha, T.; Rajendran, T.; Waji, Y.A. Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model. J. Healthc. Eng. 2022, 2022, 1601354. [Google Scholar] [CrossRef]
- Jhou, M.-J.; Chen, M.-S.; Lee, T.-S.; Yang, C.-T.; Chiu, Y.-L.; Lu, C.-J. A Hybrid Risk Factor Evaluation Scheme for Metabolic Syndrome and Stage 3 Chronic Kidney Disease Based on Multiple Machine Learning Techniques. Healthcare 2022, 10, 2496. [Google Scholar] [CrossRef]
- Son, L.H.; Ciaramella, A.; Huyen, D.T.T.; Staiano, A.; Tuan, T.M.; Van Hai, P. Predictive reliability and validity of hospital cost analysis with dynamic neural network and genetic algorithm. Neural Comput. Appl. 2020, 32, 15237–15248. [Google Scholar] [CrossRef]
- Ngoc, V.T.N.; Viet, D.H.; Tuan, T.M.; Van Hai, P.; Thang, N.P.; Tuyen, D.N.; Son, L.H. VNU-diagnosis: A novel medical system based on deep learning for diagnosis of periapical inflammation from X-Rays images. J. Intell. Fuzzy Syst. 2022, 43, 1417–1427. [Google Scholar] [CrossRef]
- Van Pham, H.; Moore, P.; Cuong, B.C. Applied picture fuzzy sets with knowledge reasoning and linguistics in clinical decision support system. Neurosci. Inform. 2022, 2, 100109. [Google Scholar] [CrossRef]
- Garg, H.; Ahmad, A.; Ullah, K.; Mahmood, T.; Ali, Z. Algorithm for multi-attribute decision-making using T-spherical fuzzy Maclaurin symmetric mean operator. Iran. J. Fuzzy Syst. 2022, 19, 111–124. [Google Scholar]
- Garg, H.; Deng, Y.; Ali, Z.; Mahmood, T. Decision-making strategy based on Archimedean Bonferroni mean operators under complex Pythagorean fuzzy information. Comput. Appl. Math. 2022, 41, 152. [Google Scholar] [CrossRef]
- Van Pham, H.; Khoa, N.D.; Bui, T.T.; Giang, N.T.; Moore, P. Applied Picture Fuzzy Sets for Group Decision-Support in the Evaluation of Pedagogic Systems. Int. J. Math. Eng. Manag. Sci. 2022, 7, 243–257. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Hu, Z.; Sun, Y. Fuzzy Logic Based Logical Query Answering on Knowledge Graphs. Proc. Conf. AAAI Artif. Intell. 2022, 36, 3939–3948. [Google Scholar] [CrossRef]
- Zadeh, L.A. Approximate reasoning based on fuzzy logic. In Proceedings of the 6th International Joint Conference on Artificial Intelligence, Tokyo, Japan, 20–23 August 1979; Volume 2, pp. 1004–1010. [Google Scholar]
- Singhal, A. “Introducing the Knowledge Graph: Things, Not Strings”, Official Google Blog. Available online: https://blog.google/products/search/introducing-knowledge-graph-things-not/ (accessed on 22 June 2022).
- Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web 2016, 8, 489–508. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, X.; Wu, Y.-P.; Zhou, W.-T.; Zhang, J.-H.; Zhang, T.-S. Knowledge graph and knowledge reasoning: A systematic review. J. Electron. Sci. Technol. 2022, 20, 100159. [Google Scholar] [CrossRef]
- Moussa, S.; Kacem, S.B.H. Symbolic approximate reasoning with fuzzy and multi-valued knowledge. Procedia Comput. Sci. 2017, 112, 800–810. [Google Scholar] [CrossRef]
- Rajabi, E.; Kafaie, S. Knowledge Graphs and Explainable AI in Healthcare. Information 2022, 13, 459. [Google Scholar] [CrossRef]
- Sachdeva, S.; Bhalla, S. Using Knowledge Graph Structures for Semantic Interoperability in Electronic Health Records Data Exchanges. Information 2022, 13, 52. [Google Scholar] [CrossRef]
- Long, C.K.; Van Hai, P.; Tuan, T.M.; Lan, L.T.H.; Ngan, T.T.; Chuan, P.M.; Son, L.H. A novel Q-learning-based FKG-Pairs approach for extreme cases in decision making. Eng. Appl. Artif. Intell. 2023, 120, 105920. [Google Scholar] [CrossRef]
Output Label | |||||||
---|---|---|---|---|---|---|---|
2 | |||||||
1 | |||||||
2 | |||||||
0 | |||||||
1 | |||||||
2 |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.17 | 0.33 | 0.17 | 0.17 | 0.33 | 0.17 | |
0.33 | 0.33 | 0.33 | 0.17 | 0.33 | 0.17 | |
0.33 | 0.33 | 0.33 | 0.17 | 0.33 | 0.17 | |
0.33 | 0.33 | 0.33 | 0.17 | 0.33 | 0.17 | |
0.33 | 0.33 | 0.33 | 0.17 | 0.33 | 0.17 | |
0.33 | 0.33 | 0.33 | 0.17 | 0.33 | 0.17 |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 0.56 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 | |
1.11 | 1.67 | 1.11 | 0.42 | 1.67 | 0.42 |
Label 0 | 0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | |
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
0.00 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | ||
Label 1 | 0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | |
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
0.00 | 3.33 | 0.00 | 0.00 | 3.33 | 0.00 | ||
Label 2 | 1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | |
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 0.56 | 0.00 | 0.00 | 0.42 | ||
2.22 | 0.00 | 2.22 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 | ||
1.11 | 0.00 | 1.11 | 0.00 | 0.00 | 0.42 |
No. | Feature’s Name | Domain |
---|---|---|
1 | Pregnant Woman’s Age | 18–66 years old |
2 | Fetus’s Age | 15–40 weeks |
3 | Occupation | Officer, Teacher, Doctor, Worker, Farmer, Freelancer, and so on. |
4 | Number of Pregnancies | 0–9 times |
5 | Pregnant Woman’s Height | 1.40–1.90 m |
6 | Pregnant Woman’s Weight | 45–95 kg |
7 | Upper Blood Pressure | 90–129 mmHg |
8 | Lower Blood Pressure | 60–84 mmHg |
9 | Hemoglobin (HGB) | 120–160 g/L |
10 | Platelet Count (PLT) | 150–450 g/L |
11 | Urea | 2.5–6.7 mmol/L |
12 | Creatinine | 50.4–98.1 μmol/L |
13 | Acid Uric | 150–350 μmol/L |
14 | Alanine Aminotransferase (ALT) | <31/37 Ul/L |
15 | Aspartate Aminotransferase (AST) | <31/37 Ul/L |
16 | Total Protein | 64–83 g/L |
17 | Albumin | 35–52 g/L |
18 | Lactate Dehydrogenase (LDH) | <247 U/L |
19 | Proteinuria | 0.1–0.25 g/L |
Output | Output labels (Diagnostic results) | 0: Normal 1: Preeclampsia 2: Severe preeclampsia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, H.V.; Long, C.K.; Khanh, P.H.; Trung, H.Q. A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs. Information 2023, 14, 104. https://doi.org/10.3390/info14020104
Pham HV, Long CK, Khanh PH, Trung HQ. A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs. Information. 2023; 14(2):104. https://doi.org/10.3390/info14020104
Chicago/Turabian StylePham, Hai Van, Cu Kim Long, Phan Hung Khanh, and Ha Quoc Trung. 2023. "A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs" Information 14, no. 2: 104. https://doi.org/10.3390/info14020104
APA StylePham, H. V., Long, C. K., Khanh, P. H., & Trung, H. Q. (2023). A Fuzzy Knowledge Graph Pairs-Based Application for Classification in Decision Making: Case Study of Preeclampsia Signs. Information, 14(2), 104. https://doi.org/10.3390/info14020104