Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data
Abstract
:1. Introduction
- Introducing wake-up time as an indicator to describe the behavior of a group of subscribers.
- Using this indicator to distinguish the areas of Budapest.
- Estimating the day length and the working hour length, using the same method.
- Demonstrating connection between the wake-up time and the mobility customs.
- Identifying correlation between the wake-up time and the socioeconomic status.
2. Materials
2.1. June 2016
2.2. April 2017
2.3. Data for the Socioeconomic Indicators
3. Methodology
3.1. Home and Work Locations
3.2. Mobility Metrics
3.3. Wake-Up Time
3.4. Aggregation of the Subscribers
4. Results and Discussion
4.1. Inhabitant-Based Approach
4.2. The Length of the Day
4.3. Area-Based Approach
4.4. Working Hours
4.5. With Respect to Mobility
4.6. With Respect to Socioeconomic Status
4.7. Limitations
4.8. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDR | Call Detail Record |
HUF | Hungarian forint |
IMEI | International Mobile Equipment Identity |
OSM | OpenStreetMap |
POI | Point of interest |
SIM | Subscriber Identity Module |
SES | Social Economic Status |
SWC | Sleep Wake Cycle |
TAC | Type Allocation Code |
Appendix A. Party District
Appendix B. iPhones
References
- Traag, V.A.; Browet, A.; Calabrese, F.; Morlot, F. Social event detection in massive mobile phone data using probabilistic location inference. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 625–628. [Google Scholar]
- Xavier, F.H.Z.; Silveira, L.M.; Almeida, J.M.D.; Ziviani, A.; Malab, C.H.S.; Marques-Neto, H.T. Analyzing the workload dynamics of a mobile phone network in large scale events. In Proceedings of the First Workshop on Urban Networking, Helsinki, Finland, 13–17 August 2012; pp. 37–42. [Google Scholar]
- Mamei, M.; Colonna, M. Estimating attendance from cellular network data. Int. J. Geogr. Inf. Sci. 2016, 30, 1281–1301. [Google Scholar] [CrossRef] [Green Version]
- Pintér, G.; Felde, I. Analyzing the Behavior and Financial Status of Soccer Fans from a Mobile Phone Network Perspective: Euro 2016, a Case Study. Information 2021, 12, 468. [Google Scholar] [CrossRef]
- Marques-Neto, H.T.; Xavier, F.H.; Xavier, W.Z.; Malab, C.H.S.; Ziviani, A.; Silveira, L.M.; Almeida, J.M. Understanding human mobility and workload dynamics due to different large-scale events using mobile phone data. J. Netw. Syst. Manag. 2018, 26, 1079–1100. [Google Scholar] [CrossRef]
- Furletti, B.; Trasarti, R.; Cintia, P.; Gabrielli, L. Discovering and understanding city events with big data: The case of rome. Information 2017, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Hiir, H.; Sharma, R.; Aasa, A.; Saluveer, E. Impact of Natural and Social Events on Mobile Call Data Records—An Estonian Case Study. In Complex Networks and Their Applications VIII; Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 415–426. [Google Scholar]
- Pintér, G.; Nádai, L.; Bognár, G.; Biczó, Z.; Felde, I. Activity Pattern Analysis of the Mobile Phone Network During a Large Social Event. In Proceedings of the 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), Danang, Vietnam, 20–22 March 2019; pp. 1–5. [Google Scholar]
- Rotman, A.; Shalev, M. Using Location Data from Mobile Phones to Study Participation in Mass Protests. Sociol. Methods Res. 2020, 0049124120914926. [Google Scholar] [CrossRef]
- Willberg, E.; Järv, O.; Väisänen, T.; Toivonen, T. Escaping from cities during the covid-19 crisis: Using mobile phone data to trace mobility in finland. ISPRS Int. J. Geo-Inf. 2021, 10, 103. [Google Scholar] [CrossRef]
- Romanillos, G.; García-Palomares, J.C.; Moya-Gómez, B.; Gutiérrez, J.; Torres, J.; López, M.; Cantú-Ros, O.G.; Herranz, R. The city turned off: Urban dynamics during the COVID-19 pandemic based on mobile phone data. Appl. Geogr. 2021, 134, 102524. [Google Scholar] [CrossRef]
- Do Lee, W.; Qian, M.; Schwanen, T. The association between socioeconomic status and mobility reductions in the early stage of England’s COVID-19 epidemic. Health Place 2021, 69, 102563. [Google Scholar] [CrossRef]
- Khataee, H.; Scheuring, I.; Czirok, A.; Neufeld, Z. Effects of social distancing on the spreading of COVID-19 inferred from mobile phone data. Sci. Rep. 2021, 11, 1661. [Google Scholar] [CrossRef]
- Bushman, K.; Pelechrinis, K.; Labrinidis, A. Effectiveness and compliance to social distancing during COVID-19. arXiv 2020, arXiv:2006.12720. [Google Scholar]
- Gao, S.; Rao, J.; Kang, Y.; Liang, Y.; Kruse, J.; Dopfer, D.; Sethi, A.K.; Reyes, J.F.M.; Yandell, B.S.; Patz, J.A. Association of mobile phone location data indications of travel and stay-at-home mandates with covid-19 infection rates in the us. JAMA Netw. Open 2020, 3, e2020485. [Google Scholar] [CrossRef]
- Hu, S.; Xiong, C.; Yang, M.; Younes, H.; Luo, W.; Zhang, L. A big-data driven approach to analyzing and modeling human mobility trend under non-pharmaceutical interventions during COVID-19 pandemic. Transp. Res. Part C Emerg. Technol. 2021, 124, 102955. [Google Scholar] [CrossRef]
- Tokey, A.I. Spatial association of mobility and COVID-19 infection rate in the USA: A county-level study using mobile phone location data. J. Transp. Health 2021, 22, 101135. [Google Scholar] [CrossRef]
- Lucchini, L.; Centellegher, S.; Pappalardo, L.; Gallotti, R.; Privitera, F.; Lepri, B.; De Nadai, M. Living in a pandemic: Changes in mobility routines, social activity and adherence to COVID-19 protective measures. Sci. Rep. 2021, 11, 24452. [Google Scholar] [CrossRef]
- Pappalardo, L.; Simini, F.; Rinzivillo, S.; Pedreschi, D.; Giannotti, F.; Barabási, A.L. Returners and explorers dichotomy in human mobility. Nat. Commun. 2015, 6, 8166. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shaw, S.L.; Zhao, Z.; Yin, L.; Fang, Z.; Li, Q. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach. Transportation 2015, 42, 625–646. [Google Scholar] [CrossRef]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Activity-based human mobility patterns inferred from mobile phone data: A case study of Singapore. IEEE Trans. Big Data 2017, 3, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Vanhoof, M.; Reis, F.; Ploetz, T.; Smoreda, Z. Assessing the quality of home detection from mobile phone data for official statistics. arXiv 2018, arXiv:1809.07567. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Belyi, A.; Bojic, I.; Ratti, C. Human mobility and socioeconomic status: Analysis of Singapore and Boston. Comput. Environ. Urban Syst. 2018, 72, 51–67. [Google Scholar] [CrossRef]
- Zagatti, G.A.; Gonzalez, M.; Avner, P.; Lozano-Gracia, N.; Brooks, C.J.; Albert, M.; Gray, J.; Antos, S.E.; Burci, P.; zu Erbach-Schoenberg, E.; et al. A trip to work: Estimation of origin and destination of commuting patterns in the main metropolitan regions of Haiti using CDR. Dev. Eng. 2018, 3, 133–165. [Google Scholar] [CrossRef]
- Mamei, M.; Bicocchi, N.; Lippi, M.; Mariani, S.; Zambonelli, F. Evaluating origin–destination matrices obtained from CDR data. Sensors 2019, 19, 4470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappalardo, L.; Ferres, L.; Sacasa, M.; Cattuto, C.; Bravo, L. Evaluation of home detection algorithms on mobile phone data using individual-level ground truth. epj Data Sci. 2021, 10, 29. [Google Scholar] [CrossRef]
- Pintér, G.; Felde, I. Evaluating the Effect of the Financial Status to the Mobility Customs. ISPRS Int. J. Geo-Inf. 2021, 10, 328. [Google Scholar] [CrossRef]
- Ghahramani, M.; Zhou, M.; Hon, C.T. Extracting significant mobile phone interaction patterns based on community structures. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1031–1041. [Google Scholar] [CrossRef]
- Csáji, B.C.; Browet, A.; Traag, V.A.; Delvenne, J.C.; Huens, E.; Van Dooren, P.; Smoreda, Z.; Blondel, V.D. Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Appl. 2013, 392, 1459–1473. [Google Scholar] [CrossRef] [Green Version]
- Kung, K.S.; Greco, K.; Sobolevsky, S.; Ratti, C. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 2014, 9, e96180. [Google Scholar] [CrossRef] [Green Version]
- Goel, R.; Sharma, R.; Aasa, A. Understanding gender segregation through Call Data Records: An Estonian case study. PLoS ONE 2021, 16, e0248212. [Google Scholar] [CrossRef]
- Barbosa, H.; Hazarie, S.; Dickinson, B.; Bassolas, A.; Frank, A.; Kautz, H.; Sadilek, A.; Ramasco, J.J.; Ghoshal, G. Uncovering the socioeconomic facets of human mobility. arXiv 2020, arXiv:2012.00838. [Google Scholar] [CrossRef]
- Ucar, I.; Gramaglia, M.; Fiore, M.; Smoreda, Z.; Moro, E. News or social media? Socio-economic divide of mobile service consumption. J. R. Soc. Interface 2021, 18, 20210350. [Google Scholar] [CrossRef]
- Vilella, S.; Paolotti, D.; Ruffo, G.; Ferres, L. News and the city: Understanding online press consumption patterns through mobile data. epj Data Sci. 2020, 9, 1–18. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.H.; Karsai, M.; Kertész, J.; Kaski, K. Circadian pattern and burstiness in mobile phone communication. New J. Phys. 2012, 14, 013055. [Google Scholar] [CrossRef]
- Cuttone, A.; Bækgaard, P.; Sekara, V.; Jonsson, H.; Larsen, J.E.; Lehmann, S. Sensiblesleep: A bayesian model for learning sleep patterns from smartphone events. PLoS ONE 2017, 12, e0169901. [Google Scholar]
- Aledavood, T.; Lehmann, S.; Saramäki, J. Social network differences of chronotypes identified from mobile phone data. EPJ Data Sci. 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Yasseri, T.; Sumi, R.; Kertész, J. Circadian patterns of wikipedia editorial activity: A demographic analysis. PLoS ONE 2012, 7, e30091. [Google Scholar] [CrossRef] [Green Version]
- Yasseri, T.; Quattrone, G.; Mashhadi, A. Temporal analysis of activity patterns of editors in collaborative mapping project of OpenStreetMap. In Proceedings of the 9th International Symposium on Open Collaboration, Hong Kong, China, 5–7 August 2013; pp. 1–4. [Google Scholar]
- Dzogang, F.; Lightman, S.; Cristianini, N. Circadian mood variations in Twitter content. Brain Neurosci. Adv. 2017, 1, 2398212817744501. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R.; Aasa, A.; Silm, S.; Tiru, M. Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transp. Res. Part C Emerg. Technol. 2010, 18, 45–54. [Google Scholar] [CrossRef]
- Aledavood, T.; López, E.; Roberts, S.G.; Reed-Tsochas, F.; Moro, E.; Dunbar, R.I.; Saramäki, J. Daily rhythms in mobile telephone communication. PLoS ONE 2015, 10, e0138098. [Google Scholar] [CrossRef] [Green Version]
- Lotero, L.; Hurtado, R.G.; Floría, L.M.; Gómez-Gardeñes, J. Rich do not rise early: Spatio-temporal patterns in the mobility networks of different socio-economic classes. R. Soc. Open Sci. 2016, 3, 150654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsivais, D.; Bhattacharya, K.; Ghosh, A.; Dunbar, R.I.; Kaski, K. Seasonal and geographical impact on human resting periods. Sci. Rep. 2017, 7, 10717. [Google Scholar] [CrossRef] [Green Version]
- Monsivais, D.; Ghosh, A.; Bhattacharya, K.; Dunbar, R.I.; Kaski, K. Tracking urban human activity from mobile phone calling patterns. PLoS Comput. Biol. 2017, 13, e1005824. [Google Scholar] [CrossRef] [PubMed]
- Alakörkkö, T.; Saramäki, J. Circadian rhythms in temporal-network connectivity. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 093115. [Google Scholar] [CrossRef] [PubMed]
- Diao, M.; Zhu, Y.; Ferreira, J., Jr.; Ratti, C. Inferring individual daily activities from mobile phone traces: A Boston example. Environ. Plan. B Plan. Des. 2016, 43, 920–940. [Google Scholar] [CrossRef] [Green Version]
- National Media and Infocommunications Authority. A Nemzeti Média- és Hírközlési Hatóság Mobilpiaci Jelentése; Technical Report; National Media and Infocommunications Authority: Budapest, Hungary, 2019. [Google Scholar]
- Al-Akaidi, M.; Ali, H. Performance Analysis of Antenna Sectorisation in Cell Breathing. In Proceedings of the Fourth International Conference on 3G Mobile Communication Technologies, London, UK, 25–27 June 2003. [Google Scholar]
- Pappalardo, L.; Vanhoof, M.; Gabrielli, L.; Smoreda, Z.; Pedreschi, D.; Giannotti, F. An analytical framework to nowcast well-being using mobile phone data. Int. J. Data Sci. Anal. 2016, 2, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Vanhoof, M.; Schoors, W.; Van Rompaey, A.; Ploetz, T.; Smoreda, Z. Comparing regional patterns of individual movement using corrected mobility entropy. J. Urban Technol. 2018, 25, 27–61. [Google Scholar] [CrossRef]
- Novović, O.; Brdar, S.; Mesaroš, M.; Crnojević, V.; Papadopoulos, A.N. Uncovering the Relationship between Human Connectivity Dynamics and Land Use. ISPRS Int. J. Geo-Inf. 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Sainani, M. GSMArena Mobile Phone Devices. Available online: https://www.kaggle.com/msainani/gsmarena-mobile-devices (accessed on 28 June 2020).
- Ahas, R.; Silm, S.; Järv, O.; Saluveer, E.; Tiru, M. Using mobile positioning data to model locations meaningful to users of mobile phones. J. Urban Technol. 2010, 17, 3–27. [Google Scholar] [CrossRef]
- Cottineau, C.; Vanhoof, M. Mobile phone indicators and their relation to the socioeconomic organisation of cities. ISPRS Int. J. Geo-Inf. 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, K.; Kaski, K. Social physics: Uncovering human behaviour from communication. Adv. Phys. X 2019, 4, 1527723. [Google Scholar] [CrossRef] [Green Version]
- Espenak, F. Solstices and Equinoxes: 2001 to 2050. 2018. Available online: http://astropixels.com/ephemeris/soleq2001.html (accessed on 16 December 2021).
- Corporation, V.C. Visual Crossing Weather (2016–2017). 2021. Available online: https://www.visualcrossing.com/ (accessed on 30 November 2021).
- Dissanayake, R.; Amarasuriya, T. Role of brand identity in developing global brands: A literature based review on case comparison between Apple iPhone vs Samsung smartphone brands. Res. J. Bus. Manag. 2015, 2, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Protalinski, E. iPhone Prices from the Original to iPhone X. 2017. Available online: https://venturebeat.com/2017/09/12/iphone-prices-from-the-original-to-iphone-x/ (accessed on 14 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintér, G.; Felde, I. Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data. Information 2022, 13, 114. https://doi.org/10.3390/info13030114
Pintér G, Felde I. Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data. Information. 2022; 13(3):114. https://doi.org/10.3390/info13030114
Chicago/Turabian StylePintér, Gergo, and Imre Felde. 2022. "Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data" Information 13, no. 3: 114. https://doi.org/10.3390/info13030114
APA StylePintér, G., & Felde, I. (2022). Awakening City: Traces of the Circadian Rhythm within the Mobile Phone Network Data. Information, 13(3), 114. https://doi.org/10.3390/info13030114