From 2D to VR Film: A Research on the Load of Different Cutting Rates Based on EEG Data Processing
Abstract
:1. Introduction
2. Related Work
2.1. Cutting Rates
2.2. Load Assessment Method Based on Spontaneous EEG
2.3. Research Combining VR and EEG
3. VR and 2D Load Comparison Experiment Based on EEG Data
3.1. Experimental Material
3.2. Hardware Equipment
3.3. Participants
3.4. Experiment Process
3.5. EEG Recording and Preprocessing
4. Results
4.1. Subjective Results
4.2. EEG Results
4.2.1. Statistics of Alpha, Beta, and Theta Waves
4.2.2. EEG Topographic Map
5. Discussion
5.1. Load and High Frequency Alpha, Beta, and Theta Waves
5.2. Subjective Perception of Load Is Related to Cutting Rates
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Lay-Ekuakille, A.; Vergallo, P.; Griffo, G.; Conversano, F.; Casciaro, S.; Urooj, S.; Bhateja, V.; Trabacca, A. Entropy index in quantitative EEG measurement for diagnosis accuracy. IEEE Trans. Instrum. Meas. 2013, 63, 1440–1450. [Google Scholar] [CrossRef]
- Tsivian, Y. Cinemetrics, Part of the Humanities’ Cyberinfrastructure. In Digital Tools in Media Studies: Analysis and Research. An Overview; Michael, R., Manfred, G., Bernd, F., Eds.; Transcript Verlag: Bielefeld, Germany, 2009; Volume 27, pp. 93–100. [Google Scholar]
- Kostyrka-Allchorne, K.; Cooper, N.R.; Gossmann, A.M.; Barber, K.J.; Simpson, A. Differential effects of film on preschool children’s behaviour dependent on editing pace. Acta Paediatr. 2017, 106, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Kostyrka-Allchorne, K.; Cooper, N.R.; Simpson, A. Disentangling the effects of video pace and story realism on children’s attention and response inhibition. Cogn. Dev. 2019, 49, 94–104. [Google Scholar] [CrossRef]
- Kostyrka-Allchorne, K.; Coope, N.R.; Kennett, S.; Nestler, S.; Simpson, A. The Short-Term Effect of Video Editing Pace on Children’s Inhibition and N2 and P3 ERP Components during Visual Go/No-Go Task. Dev. Neuropsychol. 2019, 44, 385–396. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.; Song, F.; Li, Z.; Dong, X. Mental workload measurement for emergency operating procedures in digital nuclear power plants. Ergonomics 2013, 56, 1070–1085. [Google Scholar] [CrossRef] [PubMed]
- Wanyan, X.; Zhuang, D.; Zhang, H. Improving pilot mental workload evaluation with combined measures. Bio-Med Mater. Eng. 2014, 24, 2283–2290. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Castro-Meneses, L.J.; Kruger, J.L.; Doherty, S. Validating theta power as an objective measure of cognitive load in educational video. Educ. Technol. Res. Dev. 2020, 68, 181–202. [Google Scholar] [CrossRef]
- Cepeda-Freyre, H.A.; Garcia-Aguilar, G.; Eguibar, J.R.; Cortes, C. Brain Processing of Complex Geometric Forms in a Visual Memory Task Increases P2 Amplitude. Brain Sci. 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Rojas, R.F.; Debie, E.; Fidock, J.; Barlow, M.; Kasmarik, K.; Anavatti, S.; Garratt, M.; Abbass, H. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. Front. Neurosci. 2020, 14, 1–15. [Google Scholar]
- Dussault, C.; Jouanin, J.C.; Philippe, M.; Guezennec, C.Y. EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat. Space Environ. Med. 2005, 76, 344–351. [Google Scholar] [PubMed]
- Ung, W.C.; Yap, K.H.; Ebenezer, E.G.M.; Pui, S.C.; Nordin, N.; Chan, S.C.; Yip, H.L.; Lu, C.K.; Kiguchi, M.; Tang, T.B. Assessing Neural Compensation with Visuospatial Working Memory Load Using Near-Infrared Imaging. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, N.; Chen, F.; Wang, Y.; Calvo, R.A. Detecting Users’ Cognitive Load by Galvanic Skin Response with Affective Interference. ACM Trans. Interact. Intell. Syst. 2017, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lal, S.K.L.; Craig, A.; Boord, P.; Kirkupb, L.; Nguyenc, H. Development of an algorithm for an EEG-based driver fatigue countermeasure. J. Saf. Res. 2003, 34, 321–328. [Google Scholar] [CrossRef]
- Dan, A.; Reiner, M. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. Int. J. Psychophysiol. 2017, 122, 75–84. [Google Scholar] [CrossRef]
- Qidwai, U.; Ajimsha, M.S.; Shakir, M. The Role of EEG and EMG combined Virtual Reality gaming system in facial palsy rehabilitation—A case report. J. Bodyw. Mov. Ther. 2019, 23, 425–431. [Google Scholar] [CrossRef]
- Kweon, S.H.; Kweon, H.J.; Kim, S.; Li, X.; Liu, X.; Kweon, H.L. A brain wave research on VR (virtual reality) usage: Comparison between VR and 2D video in EEG measurement. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 17−21 July 2017; pp. 194–203. [Google Scholar]
- Hasson, U.; Nir, Y.; Levy, I.; Fuhrmann, G.; Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 2004, 303, 1634–1640. [Google Scholar] [CrossRef]
- Hasson, U.; Landesman, O.; Knappmeyer, B.; Vallines, I.; Rubin, N.; Heeger, D.J. Neurocinematics: The Neuroscience of Film. Projections 2008, 2, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.P.; Humphries, C.; Lee, T.W.; Makeig, S.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing Electroencephalographic Artifacts: Comparison Between ICA and PCA. In Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378), Cambridge, UK, 2 September 1998; pp. 63–72. [Google Scholar]
- Dong, L.; Li, F.; Li, Q.; Wen, X.; Lai, Y.; Xu, P.; Yao, D. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG. Front. Neurosci. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Xie, J.; Xu, G.; Wang, J.; Li, M.; Han, C.; Jia, Y. Effects of Mental Load and Fatigue on Steady-State Evoked Potential Based Brain Computer Interface Tasks: A Comparison of Periodic Flickering and Motion-Reversal Based Visual Attention. PLoS ONE 2016, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; Shou, G.; Ding, L. ICA-Derived EEG Correlates to Mental Fatigue, Effort, and Workload in a Realistically Simulated Air Traffic Control Task. Front. Neurosci. 2017, 11, 1–12. [Google Scholar]
- Charbonnier, S.; Roy, R.N.; Bonnet, S.; Campagne, A. EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Syst. Appl. Int. J. 2016, 52, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhao, M.; Liu, J.; Zheng, C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid. Anal. Prev. 2012, 45, 83–90. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Gevins, A.; Smith, M.E.; Leong, H.; McEvoy, L.; Whitfield, S.; Du, R.; Rush, G. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Hum. Factors 1998, 40, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Logie, R.H.; Gilhooly, K.J.; Wynn, V. Counting on working memory in arithmetic problem solving. Mem. Cogn. 1994, 22, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Gartner, M.; Rohde-Liebenau, L.; Grimm, S.; Bajbouj, M. Working memory-related frontal theta activity is decreased under acute stress. Psychoneuroendocrinology 2014, 43, 105–113. [Google Scholar] [CrossRef]
- Qin, S.; Hermans, E.J.; Marle, H.J.F.V.; Luo, J.; Fernandez, G. Acute Psychological Stress Reduces Working Memory-Related Activity in the Dorsolateral Prefrontal Cortex. Biol. Psychiatry 2009, 66, 25–32. [Google Scholar] [CrossRef]
Dimension | Mode | Rate | Mode*Rate |
---|---|---|---|
mental demand | F (1, 35) = 6.04 p = 0.019 < 0.05 VR > 2D | F (2, 70) = 8.204, p = 0.001 fast > slow (p = 0.001) | \ |
physical demand | F (1, 34) = 76.915 p = 0.003 < 0.05 VR > 2D | F (2, 68) = 9.053, p < 0.001 fast > slow (p = 0.004 < 0.05) medium > slow (p = 0.004 < 0.05) | \ |
temporal demand | \ | F (2, 70) = 24.214, p < 0.001 fast > middle (p < 0.001) medium > slow (p = 0.015 < 0.05) | \ |
effort | slow: VR > 2D (p = 0.002) | 2D: Fast > slow (p < 0.001) 2D: Medium > slow (p < 0.001) | p = 0.047 < 0.05 |
performance | \ | F (2,60) = 4.393, p = 0.024 < 0.05 fast > medium (p = 0.031 < 0.05) fast > slow (p = 0.022 < 0.05) | \ |
frustration level | fast: VR > 2D (p = 0.007 < 0.05) | VR: Fast > medium (p = 0.026 < 0.05) VR: Fast > slow (p = 0.002 < 0.05) | p = 0.049 < 0.05 |
total value | \ | F (2,64.639) = 17.597, p < 0.001 fast > medium (p < 0.001) fast > slow (p < 0.001) | \ |
Wave | Mode | Rate | Mode*Rate |
---|---|---|---|
alpha | F (1, 30) = 10.357 p = 0.003 < 0.05 VR > 2D | \ | \ |
beta | F (1, 30) = 29.424 p < 0.001 VR > 2D | \ | \ |
theta | \ | 2D: Medium < slow (p = 0.001 < 0.05) | p = 0.047 < 0.05 |
Wave | 2D | VR | t | sig |
---|---|---|---|---|
alpha | 3153.691 | 3928.887 | −0.972 | 0.346 |
beta | 5895.521 | 4890.963 | 0.821 | 0.425 |
theta | 4216.904 | 4050.844 | 0.253 | 0.804 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Zhang, Y.; Li, Y. From 2D to VR Film: A Research on the Load of Different Cutting Rates Based on EEG Data Processing. Information 2021, 12, 130. https://doi.org/10.3390/info12030130
Tian F, Zhang Y, Li Y. From 2D to VR Film: A Research on the Load of Different Cutting Rates Based on EEG Data Processing. Information. 2021; 12(3):130. https://doi.org/10.3390/info12030130
Chicago/Turabian StyleTian, Feng, Yan Zhang, and Yingjie Li. 2021. "From 2D to VR Film: A Research on the Load of Different Cutting Rates Based on EEG Data Processing" Information 12, no. 3: 130. https://doi.org/10.3390/info12030130
APA StyleTian, F., Zhang, Y., & Li, Y. (2021). From 2D to VR Film: A Research on the Load of Different Cutting Rates Based on EEG Data Processing. Information, 12(3), 130. https://doi.org/10.3390/info12030130