Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks
Abstract
:1. Introduction
2. Previous Surveys of WSNs Routing Protocols
3. The Proposed Taxonomy
3.1. Application Type
3.1.1. Event-Driven
Sink Centric
- Real-Time and Reliable Transport (RT)2 Protocol
- Loss Tolerant Reliable Event Sensing (LTRES) Protocol
- Reliable Robust and Real-Time (RRRT) Protocol
- Simultaneous Multiple Event-to-Sink Reliable Transport (SMESRT) Protocol
- Congestion and Delay Aware Routing (CODAR) Protocol
Node Centric
- Collaborative Event Detection and Tracking (CollECT) protocol
- Energy Efficient-Low Latency Express Routing Protocol(EELLER)
- Information Quality Aware Routing (IQAR) Protocol
- Event Reliability Protocol (ERP)
- Efficient Event Detection Protocol (EEDP)
3.1.2. Time-Driven
- Well-Balanced-Threshold sensitive Energy Efficient sensor Network protocol (WB-TEEN)
3.2. Delivery Mode
3.2.1. Real-Time Delivery
- Real-Time Power-Aware Two Hop routing (PATH)
- Contention-based Beaconless Real-time Routing protocol (CBRR)
3.2.2. Non-Real-Time Delivery
- On-demand Multi-hop Look ahead Real-time routing protocol (OMLRP)
3.3. Network Architecture
3.3.1. Data-Centric
- ACtiveQUery forwarding In sensoR nEtworks (ACQUIRE)
- RoUting on finGerprint Gradient in sEnsor networks (RUGGED)
3.3.2. Position Centric (Geocentric)
- Minimum hop routing protocol (Min-Hop)
- Path Energy Weight (PEW)
3.4. Initiator of Communication
3.4.1. Source
3.4.2. Destination
3.5. Path Establishment (Route Discovery)
3.5.1. Proactive (Table-Driven)
- SinkTrail
3.5.2. Reactive (Demand-Driven)
- Ad Hoc On-Demand Distance Vector (AODV)
3.5.3. Hybrid
3.6. Network Topology (Structure)
3.6.1. Hierarchical (Cluster-Based)
Block Cluster-Based
- Chain Cluster-based Mixed (CCM)
- LEACH with Virtual Force (LEACH-VF)
- Hierarchical Clustering-based routing algorithm with Two cluster heads in each cluster for Energy balancing (HCTE)
Grid Cluster-Based
- Hierarchical Geographic Multicast Routing (HGMR)
- SLGC
Chain Cluster-Based
- Concentric Clustering Scheme (CCS)
3.6.2. Flat
3.6.3. Heterogeneity-Based
- Developed Distributed Energy-Efficient Clustering (DDEEC)
- Threshold-Sensitive Stable Election Routing Protocol (TSEP) Protocol
- Enhanced Developed Distributed Energy Efficient Clustering (EDDEEC)
- Balanced Energy Efficient Network Integrated Super Heterogeneous (BEENISH) Protocol
3.6.4. Mobility-Based Protocols
Mobile Sinks-Based Routing Protocols
- Meeting Position Aware Routing (MPAR) protocol
Mobile Sensor Nodes-Based Routing Protocols
- Mobility-based clustering protocol (MBC)
- Energy-Efficient and Fault-Tolerant Routing Protocol for Mobile Sensor Network (FTCP-MWSN)
3.6.5. Geo-Routing (Direct Communication)
Position-Based Routing
Geocast
- GeoGRID
3.7. Protocol Operation
3.7.1. Multipath-Based
Alternative-Path Routing
- Braided Multipath Routing (BMR) Protocol
- An Efficient Fault-Tolerant Multipath Routing Protocol (HDMRP)
Load Balancing
- Meshed Multipath Routing (M-MPR)
Energy-Efficient
- Energy-Efficient and Collision-Aware Multipath Routing Protocol (EECA)
- Low-Interference Energy-Efficient Multipath Routing Protocol (LIEMRO)
Data Transmission Reliability
- Multi-Constrained QoS Multipath Routing (MCMP)
- Energy Constrained Multipath Routing (ECMP)
3.7.2. Query-Based
3.7.3. Negotiation-Based
3.7.4. QoS-Based
- QoS-based energy-efficient sensor routing (QuESt) protocol
3.7.5. Coherent-Based
3.8. Next-Hop Selection
3.8.1. Broadcast-Based
3.8.2. Location-Based
3.8.3. Content-Based
3.8.4. Probabilistic
3.8.5. Opportunistic
3.8.6. Hierarchical
3.9. Latency Aware and Energy-Efficient Routing
3.9.1. Cluster-Based
3.9.2. Multipath
3.9.3. Location-Based
3.9.4. Heuristic and Swarm-Based
SB Data-Centric Routing Protocols
- Pheromone-based energy-aware Directed Diffusion (PEADD)
SB Location-Based Protocols
- Sensor-driven and cost-aware ant routing (SC)
SB Hierarchical Protocols
- Self-organizing data gathering scheme (SDG scheme)
Network Flow and QoS-Aware Protocols
- Energy-efficient ACO-based QoS routing (EAQR)
4. Simulation Results
4.1. Energy and Network Model
4.2. Simulation Results and Performance Evaluation
- Network lifetime
- Stability/instability periods
- Remaining energy
5. Conclusions and FUTURE Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yetgin, H.; Cheung, K.T.; El-Hajjar, M.; Hanzo, L.H. A Survey of Network Lifetime Maximization Techniques in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2017, 19, 828–854. [Google Scholar] [CrossRef] [Green Version]
- Suman, B.; Silki, B. Wireless sensor network. Int. J. Eng. Sci. 2016, 1706. [Google Scholar]
- Yuan, D.; Kanhere, S.S.; Hollick, M. Instrumenting Wireless Sensor Networks—A survey on the metrics that matter. Pervasive Mob. Comput. 2017, 37, 45–62. [Google Scholar] [CrossRef]
- Keskin, M.E.; Altınel, I.K.; Aras, N.; Ersoy, C. Wireless sensor network design by lifetime maximisation: An empirical evaluation of integrating major design issues and sink mobility. Int. J. Sens. Netw. 2016, 20, 131–146. [Google Scholar] [CrossRef]
- Kafi, M.A.; Othman, J.B.; Badache, N. A Survey on Reliability Protocols in Wireless Sensor Networks. ACM Comput. Surv. 2017, 50, 31. [Google Scholar] [CrossRef]
- KhadirKumar, N.; Bharathi, A. Real time energy efficient data aggregation and scheduling scheme for WSN using ATL. Comput. Commun. 2020, 151, 202–207. [Google Scholar]
- Mohemed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Energy-efficient routing protocols for solving energy hole problem in wireless sensor networks. Comput. Netw. 2017, 114, 51–66. [Google Scholar] [CrossRef]
- Sabor, N.; Sasaki, S.; Abo-Zahhad, M.; Ahmed, S.M. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions. Wirel. Commun. Mob. Comput. 2017, 2017, 1–23. [Google Scholar] [CrossRef]
- Jaber, G.; Kacimi, R. A collaborative caching strategy for content-centric enabled wireless sensor networks. Comput. Commun. 2020, 159, 60–70. [Google Scholar] [CrossRef]
- Chandirika, B.; Sakthivel, N.K. Performance Analysis of Clustering-Based Routing Protocols for Wireless Sensor Networks. In Advances in Big Data and Cloud Computing; Springer: Singapore, 2018; pp. 269–276. [Google Scholar]
- Pandey, M.A.; Gupta, P.N.; Vardhan, H. Performance Evaluation of Various Routing Protocols and quality of service for Wireless Sensor Network. J. Telecommun. Stud. 2018, 4, 24–35. [Google Scholar]
- Goyal, D.; Tripathy, M.R. Routing Protocols in Wireless Sensor Networks: A Survey. In Proceedings of the 2012 Second International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, India, 7–8 January 2012. [Google Scholar]
- Rathi, N.; Saraswat, J.; Bhattacharya, P.P. A review on routing protocols for application in wireless sensor networks. arXiv 2012, arXiv:1210.2940. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Sutha, J. Analysis of routing protocols for wireless sensor networks. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 401–407. [Google Scholar]
- Devika, R.; Santhi, B.; Sivasubramanian, T. Survey on routing protocol in wireless sensor network. Int. J. Eng. Technol. 2013, 5, 350–356. [Google Scholar]
- Jeny, J.R.; Ananth, A.D. Analysis of Routing Protocols for Wireless Sensor Networks: A Survey. Int. J. Sci. Res. 2013, 2, 359–365. [Google Scholar]
- Abdullah, M.; Ehsan, A. Routing protocols for wireless sensor networks: Classifications and challenges. J. Electron. Commun. Eng. Res. 2014, 2, 5–15. [Google Scholar]
- Garg, P.; Rani, R. A Survey on Wireless Sensor Networks Routing Algorithms. In Advances in Ubiquitous Networking; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Parvathi, C.; Suresha, D. Existing Routing Protocols for Wireless Sensor Network—A study. Int. J. Comput. Eng. Res. 2014, 4, 2250–3005. [Google Scholar]
- Sharan, H.O.; Raghuvanshi, C.S.; Prakash, R.; Kumar, R. Survey on routing techniques in wireless Sensor networks. N. VSci. J. 2014, 7, 45–49. [Google Scholar]
- Kaur, J.; Kaur, T.; Kaushal, K. Survey on WSN routing protocols. Int. J. Comput. Appl. 2015, 109, 24–28. [Google Scholar] [CrossRef]
- Nigam, G.K.; Dabas, C. A Survey on Protocols and Routing Algorithms for Wireless Sensor Networks. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 21–23 October 2015. [Google Scholar]
- Roseline, R.A.; Sumathi, P. Energy efficient routing protocols for wireless sensor networks: A survey. Int. J. Comput. Appl. 2017, 165, 41–46. [Google Scholar]
- Kochhar, A.; Kaur, P.; Singh, P.; Sharma, S. Protocols for Wireless Sensor Networks: A Survey. J. Telecommun. Inf. Technol. 2018, 77–87. [Google Scholar] [CrossRef]
- Nakas, C.; Kandris, D.; Visvardis, G. Energy Efficient Routing in Wireless Sensor Networks: A Comprehensive Survey. Algorithms 2020, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- Kardi, A.; Zagrouba, R.; Alqahtani, M. A taxonomy of routing protocols in Wireless Sensor Networks. In Proceedings of the 20th International Conference on Wireless Information Technology and Systems, Lisbon, Portugal, 4 September 2018. [Google Scholar]
- Gungor, V.C.; Akan, Ö.B.; Akyildiz, I.F. A Real-Time and Reliable Transport (RT) 2 Protocol for Wireless Sensor and Actor Networks. IEEE/ACM Trans. Netw. 2008, 16, 359–370. [Google Scholar] [CrossRef]
- Abazeed, M.; Faisal, N.; Zubair, S.; Ali, A. Event driven routing protocols for wireless sensor network—A Survey. Int. J. Comput. Sci. Appl. 2013. [Google Scholar] [CrossRef]
- Xue, Y.; Ramamurthy, B.; Wang, Y. LTRES: A loss-tolerant reliable event sensing protocol for wireless sensor networks. Comput. Commun. 2009, 32, 1666–1676. [Google Scholar] [CrossRef]
- Virmani, D.; Jain, S. Reliable robust and real-time communication protocol for data delivery in wireless sensor networks. Int. J. Inf. Technol. Kn. Manag. 2011, 4, 595–601. [Google Scholar]
- Rahman, H.; Karmaker, D.; Rahaman, M.S.; Sultana, N. SMESRT: A protocol for multiple event-to-sink reliability in WSN. Int. J. Eng. Technol. 2011, 1, 9–14. [Google Scholar]
- Bhuiyan, M.M.; Gondal, I.; Kamruzzaman, J. CODAR: Congestion and delay aware routing to detect time critical events in WSNs. In Proceedings of the Information Networking (ICOIN), 2011 International Conference, Barcelona, Spain, 26–28 January 2011; pp. 357–362. [Google Scholar]
- Shih, K.P.; Wang, S.S.; Chen, H.C.; Yang, P.H. CollECT: Collaborative event detection and tracking in wireless heterogeneous sensor networks. Comput. Commun. 2008, 31, 3124–3136. [Google Scholar] [CrossRef]
- Mohebi, A.; Tashtarian, F.; Moghaddam, M.H.; Honary, M.T. EELLER: Energy efficient-low latency express routing for wireless sensor networks. In Proceedings of the Computer Engineering and Technology (ICCET), 2010 2nd International Conference, Chengdu, China, 16–18 April 2010; pp. V3-334–V3-339. [Google Scholar]
- Sangeetha, K. Fast, Reliable and Efficient Event-Detecting (Freed) Protocol for Event-Driven Wireless Sensor Networks. Int. J. Comput. Appl. 2013, 10, 1–6. [Google Scholar]
- Tan, H.X.; Chan, M.C.; Xiao, W.; Kong, P.Y.; Tham, C.K. Information quality aware routing in event-driven sensor networks. In Proceedings of the Infocom, 2010 Proceedings IEEE, San Diego, CA, USA, 14–19 March 2010; pp. 1–9. [Google Scholar]
- Mahajan, A.S.; Dhamdhere, V. Energy Efficient Fast Forwarding in Event Driven Wireless Sensor Network (EWSN) using Route Discovery. Energy 2013, 2, 1–7. [Google Scholar]
- Mahmood, M.A.; Seah, W.K. Event reliability in wireless sensor networks. In Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference, Adelaide, SA, Australia, 6–9 December 2011; pp. 377–382. [Google Scholar]
- Liang, L.; Gao, D.; Zhang, H.; Yang, O.W. Efficient event detecting protocol in event-driven wireless sensor networks. IEEE Sens. J. 2012, 12, 2328–2337. [Google Scholar] [CrossRef]
- Aliouat, Z.; Harous, S. An Efficient Clustering Protocol Increasing Wireless Sensor Networks Life Time. In Proceedings of the International Conference on Innovations in Information Technology (IIT), Abu Dhabi, United Arab Emirates, 18–20 March 2012. [Google Scholar]
- Manjeshwar, A.; Agrawal, D.P. TEEN: ARouting Protocol for Enhanced Efficiency in Wireless Sensor Networks. Ipdps 2001, 1, 189. [Google Scholar]
- Harous, S.; Aliouat, Z. Energy Efficient Multi-Hops Clustering Protocol for Wireless Sensor Networks. Int. J. Comput. Commun. 2015, 9, 88–95. [Google Scholar]
- KC, K.P.; Terence, S. A Survey on Event Detection and Transmission Protocols in an Event Driven Wireless Sensor Network. Int. J. Comput. Appl. 2012, 58, 12–18. [Google Scholar]
- Bansal, S.; Juneja, D.; Mukherjee, S. An analysis of real time routing protocols for wireless sensor networks. Int. J. Eng. Sci. Technol. 2011, 3, 1797–1801. [Google Scholar]
- Soyturk, M.; Cicibas, H.; Unal, O.; Vadursi, M. Real-Time Data Acquisition in Wireless Sensor Networks; INTECH Open Access Publisher: London, UK, 2010. [Google Scholar]
- Zhan, A.D.; Xu, T.Y.; Chen, G.H.; Ye, B.L.; Lu, S.L. A survey on real-time routing protocols for wireless sensor networks. Chin. J. Comput. Sci. 2008, 3, 234–238. [Google Scholar]
- Li, Y.; Chen, C.S.; Song, Y.Q.; Wang, Z.; Sun, Y. Enhancing real-time delivery in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inf. 2009, 5, 113–122. [Google Scholar]
- Rachamalla, S.; Kancharla, A.S. A survey of real-time routing protocols for wireless sensor networks. Int. J. Comput. Sci. Eng. Surv. 2013, 4, 35. [Google Scholar] [CrossRef]
- Huang, C.; Wang, G. Contention-based beaconless real-time routing protocol for wireless sensor networks. Wirel. Sens. Netw. 2010, 2, 528. [Google Scholar] [CrossRef] [Green Version]
- Al-Karaki, J.N.; Al-Mashaqbeh, G.A. Energy-centric routing in wireless sensor networks. Microprocess. Microsyst. 2007, 31, 252–262. [Google Scholar] [CrossRef]
- Jung, J.; Park, S.; Lee, E.; Oh, S.; Kim, S.H. OMLRP: Multi-hop information based real-time routing protocol in wireless sensor networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC), Sydney, NSW, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- Chennakesavula, P.; Ebenezer, J.; Murty, S.S. Real-time routing protocols for wireless sensor networks: A survey. In Proceedings of the Fourth International Workshop on Wireless & Mobile Networks (WIMo), Coimbatore, India, 26–28 October 2012; pp. 26–28. [Google Scholar]
- Kannammal, K.E.; Purusothaman, T. Comparison of Data Centric Routing Protocols with Random Way Point Mobility Model in Mobile Sensor Networks. Eur. J. Sci. Res. 2011, 65, 452–546. [Google Scholar]
- Sadagopan, N.; Krishnamachari, B.; Helmy, A. The ACQUIRE mechanism for efficient querying in sensor networks. In Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, 11 May 2003; pp. 149–155. [Google Scholar]
- Faruque, J.; Helmy, A. RUGGED: Routing on fingerprint gradients in sensor networks. In Proceedings of the IEEE/ACS International Conference on Pervasive Services, Beirut, Lebanon, 23 July 2004; pp. 179–188. [Google Scholar]
- Chiang, S.S.; Huang, C.H.; Chang, K.C. A minimum hop routing protocol for home security systems using wireless sensor networks. IEEE Trans. Consum. Electron. 2007, 53, 1483–1489. [Google Scholar] [CrossRef]
- El-Semary, A.M.; Azim, M.M. Path energy weight: A global energy-aware routing protocol for wireless sensor networks. In Proceedings of the 2010 IFIP Wireless Days, Venice, Italy, 20–22 October 2010; pp. 1–6. [Google Scholar]
- Liu, X.; Zhao, H.; Yang, X.; Li, X. SinkTrail: A proactive data reporting protocol for wireless sensor networks. IEEE Trans. Comput. 2013, 62, 151–162. [Google Scholar] [CrossRef]
- Perkins, C.; Belding-Royer, E.; Das, S. Ad Hoc on-Demand Distance Vector (AODV) Routing. 2003. Available online: https://dl.acm.org/doi/pdf/10.17487/RFC3561 (accessed on 15 January 2021).
- Koliousis, A.; Sventek, J. Proactive Vs Reactive Routing for Wireless Sensor Networks; Department of Computing Science, University of Glasgow: Glasgow, Scotland, 2007. [Google Scholar]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January 2000; Volume 2, p. 10. [Google Scholar]
- Lindsey, S.; Raghavendra, C.; Sivalingam, K.M. Data gathering algorithms in sensor networks using energy metrics. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Awad, F.; Taqieddin, E.; Seyam, A. Energy-Efficient and Coverage-Aware Clustering in Wireless Sensor Networks; Institutional Repository; University of Embu: Embu, Kenya, 2012. [Google Scholar]
- Azizi, N.; Karimpour, J.; Seifi, F. HCTE: Hierarchical Clustering based routing algorithm with applying the Two cluster heads in each cluster for Energy balancing in WSN. IJCSI Int. J. Comput. Sci. 2012, 9, 57–61. [Google Scholar]
- Koutsonikolas, D.; Das, S.M.; Hu, Y.C.; Stojmenovic, I. Hierarchical geographic multicast routing for wireless sensor networks. Wirel. Netw. 2010, 16, 449–466. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.A.; Ruiz, P.M.; Stojmnenovic, I. GMR: Geographic multicast routing for wireless sensor networks. In Proceedings of the 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 28 September 2006; pp. 20–29. [Google Scholar]
- Das, S.M.; Pucha, H.; Hu, Y.C. Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 2008, 19, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Delavar, A.G.; Shamsi, S.; Mirkazemi, N.; Artin, J. SLGC: A New Cluster Routing Algorithm in Wireless Sensor Network for Decrease Energy Consumption. Int. J. Comput. Sci. Eng. Appl. 2012, 2, 39. [Google Scholar] [CrossRef]
- Jung, S.M.; Han, Y.J.; Chung, T.M. The concentric clustering scheme for efficient energy consumption in the PEGASIS. In Proceedings of the 9th International Conference on Advanced Communication Technology, Okamoto, Kobe, Japan, 12–14 February 2007; pp. 260–265. [Google Scholar]
- Liu, X. A survey on clustering routing protocols in wireless sensor networks. Sensors 2012, 12, 11113–11153. [Google Scholar] [CrossRef]
- Yadav, A.K.; Rana, P. Cluster based routing schemes in wireless sensor networks: A comparative study. Int. J. Comput. Appl. 2015, 125, 31–36. [Google Scholar]
- Elbhiri, B.; Saadane, R.; Aboutajdine, D. Developed Distributed Energy-Efficient Clustering (DDEEC) for heterogeneous wireless sensor networks. In Proceedings of the 2010 5th International Symposium On I/V Communications and Mobile Network, Rabat, Morocco, 30 September–2 October 2010; pp. 1–4. [Google Scholar]
- Qing, L.; Zhu, Q.; Wang, M. Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Comput. Commun. 2006, 29, 2230–2237. [Google Scholar] [CrossRef]
- Rathee, A.; Kashyap, I.; Choudhary, K. Developed Distributed Energy-Efficient Clustering (DDEEC) Algorithm based on Fuzzy Logic Approach for Optimizing Energy Management in Heterogeneous WSNs. Int. J. Comput. Appl. 2015, 115, 8887. [Google Scholar] [CrossRef]
- Kashaf, A.; Javaid, N.; Khan, Z.A.; Khan, I.A. TSEP: Threshold-sensitive stable election protocol for WSNs. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad, India, 17–19 December 2012; pp. 164–168. [Google Scholar]
- Kumar, S.; Verma, S.K.; Kumar, A. Enhanced Threshold Sensitive Stable Election Protocol for Heterogeneous Wireless Sensor Network. Wirel. Pers. Commun. 2015, 85, 2643–2656. [Google Scholar] [CrossRef]
- Javaid, N.; Qureshi, T.N.; Khan, A.H.; Iqbal, A.; Akhtar, E.; Ishfaq, M. EDDEEC: Enhanced developed distributed energy-efficient clustering for heterogeneous wireless sensor networks. Procedia Comput. Sci. 2013, 19, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Sharma, E.R.; Sharma, E.S. A Survey on Various Routing Protocols in Wireless Sensor Networks. Int. J. Innov. Eng. Technol. 2016, 7, 486–493. [Google Scholar]
- Qureshi, T.N.; Javaid, N.; Khan, A.H.; Iqbal, A.; Akhtar, E.; Ishfaq, M. BEENISH: Balanced energy efficient network integrated super heterogeneous protocol for wireless sensor networks. Procedia Comput Sci. 2013, 19, 920–925. [Google Scholar]
- Verma, S.; Sood, N.; Sharma, A.K. A novelistic approach for energy efficient routing using single and multiple data sinks in heterogeneous wireless sensor network. Peer-Peer Netw. Appl. 2019, 12, 1110–1136. [Google Scholar] [CrossRef]
- Zheng, J.; Jamalipour, A. Wireless Sensor Networks: A Networking Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Chen, Y.; Cheng, L.; Chen, C.; Ma, J. Meeting position aware routing for query-based mobile enabled wireless sensor network. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009; pp. 1–5. [Google Scholar]
- Deng, S.; Li, J.; Shen, L. Mobility-based clustering protocol for wireless sensor networks with mobile nodes. IET Wirel. Sens. Syst. 2011, 1, 39–47. [Google Scholar] [CrossRef]
- Awwad, S.A.; Ng, C.K.; Noordin, N.K.; Rasid, M.F. Cluster based routing protocol for mobile nodes in wireless sensor network. Wirel. Pers. Commun. 2011, 61, 251–281. [Google Scholar] [CrossRef]
- Rai, D.; Hiwale, A.S. Enhanced MBC (mobility-based clustering) protocol for wireless AD-hoc networks. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 171–175. [Google Scholar]
- Karim, L.; Nasser, N. Energy efficient and fault tolerant routing protocol for mobile sensor network. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5. [Google Scholar]
- Sahi, L.; Khandnor, P. Enhanced mobility based clustering protocol for wireless sensor networks. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 687–692. [Google Scholar]
- Lu, Y.M.; Wong, V.W. An energy-efficient multipath routing protocol for wireless sensor networks. Int. J. Commun. Syst. 2007, 20, 747–766. [Google Scholar]
- Mauve, M.; Widmer, J.; Hartenstein, H. A survey on position-based routing in mobile ad hoc networks. IEEE Netw. 2001, 15, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.; Camp, T. Comparison of broadcasting techniques for mobile ad hoc networks. In Proceedings of the 3rd ACM International Symposium on Mobile ad Hoc Networking & Computing, Lausanne, Switzerland, 9 June 2002; pp. 194–205. [Google Scholar]
- Liao, W.H.; Tseng, Y.C.; Lo, K.L.; Sheu, J.P. Sheu, GeoGRID: A Geocasting Protocol for Mobile Ad Hoc Networks based on GRID. J. Internet Technol. 2002, 1, 196–213. [Google Scholar]
- Rahbar, H.; Naik, K.; Nayak, A. DTSG: Dynamic time-stable geocast routing in vehicular ad hoc networks. In Proceedings of the 2010 The 9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Juna-les-Pins, France, 23–25 June 2010; pp. 1–7. [Google Scholar]
- Jayashree, A.; Biradar, G.S.; Mytri, V.D. Review of Multipath Routing Protocols in Wireless Multimedia Sensor Network—A Survey. Int. J. Sci. Eng. Res. 2012, 3, 1–9. [Google Scholar]
- Ben-Othman, J.; Yahya, B. Energy efficient and QoS based routing protocol for wireless sensor networks. J. Parallel Distrib. Comput. 2010, 70, 849–857. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, C.; Sun, Y.; Yang, J. Network coding based reliable disjoint and braided multipath routing for sensor networks. J. Netw. Comput. Appl. 2010, 33, 422–432. [Google Scholar] [CrossRef]
- Yang, C.H.; Lin, L.W.; Chou, C.W. A Routing Approach for Constructing Braided Multipath to Alleviate Congestion in WSNs. Int. J. Emerg. Trends Technol. Comput. Sci. 2016, 5, 200–207. [Google Scholar]
- Hadjidj, A.; Bouabdallah, A.; Challal, Y. HDMRP: An efficient fault-tolerant multipath routing protocol for heterogeneous wireless sensor networks. In International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness; Springer: Berlin/Heidelberg, Germany, 2010; pp. 469–482. [Google Scholar]
- De, S.; Qiao, C.; Wu, H. Meshed multipath routing: An efficient strategy in sensor networks. In Proceedings of the 2003 IEEE Wireless Communications and Networking, New Orleans, LA, USA, 16–20 March 2003; pp. 1912–1917. [Google Scholar]
- Wang, Z.; Bulut, E.; Szymanski, B.K. Energy efficient collision aware multipath routing for wireless sensor networks. In Proceedings of the 2009 IEEE International Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Radi, M.; Dezfouli, B.; Bakar, K.A.; Lee, M. Multipath routing in wireless sensor networks: Survey and research challenges. Sensors 2012, 12, 650–685. [Google Scholar] [CrossRef] [Green Version]
- Radi, M.; Dezfouli, B.; Abd Razak, S.; Bakar, K.A. LIEMRO: A Low-Interference energy-efficient multipath routing protocol for improving QoS in event-based wireless sensor networks. In Proceedings of the 2010 Fourth International Conference on Sensor Technologies and Applications, Venice, Italy, 18–25 July 2010; pp. 551–557. [Google Scholar]
- Huang, X.; Fang, Y. Multiconstrained QoS multipath routing in wireless sensor networks. Wirel. Netw. 2008, 14, 465–478. [Google Scholar] [CrossRef]
- Bagula, A.B.; Mazandu, K.G. Energy constrained multipath routing in wireless sensor networks. In International Conference on Ubiquitous Intelligence and Computing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 453–467. [Google Scholar]
- Kaschel, H.; Ortega, J. Energy efficiency in routing protocols applied to WSN. In Proceedings of the 2016 IEEE International Conference on Automatica (ICA-ACCA), Curico, Chile, 19–21 October 2016; pp. 1–8. [Google Scholar]
- Kulik, J.; Heinzelman, W.; Balakrishnan, H. Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel. Netw. 2002, 8, 169–185. [Google Scholar] [CrossRef]
- Rehena, Z.; Roy, S.; Mukherjee, N. A modified SPIN for wireless sensor networks. In Proceedings of the 2011 Third International Conference on Communication Systems and Networks (COMSNETS 2011), Bangalore, India, 4–8 January 2011; pp. 1–4. [Google Scholar]
- Saxena, N.; Roy, A.; Shin, J. QuESt: A QoS-based energy efficient sensor routing protocol. Wirel. Commun. Mob. Comput. 2009, 9, 417–426. [Google Scholar] [CrossRef]
- Sohrabi, K.; Gao, J.; Ailawadhi, V.; Pottie, G.J. Protocols for self-organization of a wireless sensor network. IEEE Pers. Commun. 2000, 7, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhang, B.; Li, C.; Mouftah, H.T. Routing protocols for wireless sensor networks with mobile sinks: A survey. IEEE Commun. Mag. 2014, 52, 150–157. [Google Scholar] [CrossRef]
- Loh, P.K.; Long, S.H.; Pan, Y. An efficient and reliable routing protocol for wireless sensor networks. In Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, Taormina-Giardini Naxos, Italy, 16 June 2005; pp. 512–516. [Google Scholar]
- Kim, J.; Ravindran, B. Opportunistic real-time routing in multi-hop wireless sensor networks. In Proceedings of the 2009 ACM Symposium on Applied Computing, Honolulu, HI, USA, 8 March 2009; pp. 2197–2201. [Google Scholar]
- Spachos, P.; Chatzimisios, P.; Hatzinakos, D. Energy aware opportunistic routing in wireless sensor networks. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 405–409. [Google Scholar]
- Biswas, S.; Morris, R. Opportunistic routing in multi-hop wireless networks. ACM SIGCOMM Comput. Commun. Rev. 2004, 34, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Hou, M.; Zhang, N.; Gao, M. Multipath Routing Algorithm Based on Ant Colony Optimization and Energy Awareness. Wirel. Pers. Commun. Int. J. 2017, 94, 2937–2948. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Chen, Y. An Improved Routing Algorithm Based on Ant Colony Optimization in Wireless Sensor Networks. IEEE Commun. Lett. 2017, 21, 1317–1320. [Google Scholar] [CrossRef]
- Zhu, X. Pheromone based energy aware directed diffusion algorithm for wireless sensor network. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 283–291. [Google Scholar]
- Zhang, Y.; Kuhn, L.D.; Fromherz, M.P. Improvements on ant routing for sensor networks. In International Workshop on Ant Colony Optimization and Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2004; pp. 154–165. [Google Scholar]
- Kiri, Y.; Sugano, M.; Murata, M. Self-organized data-gathering scheme for multi-sink sensor networks inspired by swarm intelligence. In Proceedings of the First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007), Cambridge, MA, USA, 9–11 July 2007; pp. 161–172. [Google Scholar]
- Wang, J.; Xu, J.; Xiang, M. EAQR: An energy-efficient ACO based QoS routing algorithm in wireless sensor networks. Chin. J. Electron. 2009, 18, 113–116. [Google Scholar]
- Zungeru, A.M.; Ang, L.M.; Seng, K.P. Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. J. Netw. Comput. Appl. 2012, 35, 1508–1536. [Google Scholar] [CrossRef]
- Saini, P.; Sharma, A.K. E-DEEC-enhanced distributed energy efficient clustering scheme for heterogeneous WSN. In Proceedings of the 2010 First International Conference on Parallel, Distributed and Grid Computing (PDGC 2010), Solan, India, 28–30 October 2010; pp. 205–210. [Google Scholar]
- Tang, L.; Lu, Z.; Fan, B. Energy Efficient and Reliable Routing Algorithm for Wireless Sensors Networks. Appl. Sci. 2020, 10, 1885. [Google Scholar] [CrossRef] [Green Version]
Year | Surveys | Defined Routing Protocols Classes | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flat-Based | Location-Based | Hierarchical | Data-Centric | Multipath | Network Structure | Protocol Operation | Routing Objectives | Architecture-Based (Topology) | Power Transmission | Route Selection-Based | QoS-Based | Mobility-Based | Heterogeneity-Based | Communication Model | Path Establishment | ||
2012 | [12] | ✓ | ✓ | ✓ | |||||||||||||
2012 | [13] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
2012 | [14] | ✓ | ✓ | ✓ | |||||||||||||
2013 | [15] | ✓ | ✓ | ||||||||||||||
2013 | [16] | ✓ | ✓ | ||||||||||||||
2014 | [17] | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
2014 | [18] | ✓ | ✓ | ||||||||||||||
2014 | [19] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
2014 | [20] | ✓ | ✓ | ✓ | |||||||||||||
2015 | [21] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||
2015 | [22] | ✓ | ✓ | ✓ | |||||||||||||
2017 | [23] | ✓ | ✓ | ✓ | ✓ | ||||||||||||
2018 | [24] | ✓ | ✓ | ✓ | |||||||||||||
2020 | [25] | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Protocol. | Application Type | Reliability | Congestion Control | Energy Efficiency | ||
---|---|---|---|---|---|---|
Time-Driven | Event-Driven | |||||
Sink-Centric | Node-Centric | |||||
(RT) 2 | ✓ | N A | N A | ✓ | ||
LTRES | ✓ | N A | ✓ | N A | ||
RRRT | ✓ | ✓ | N A | N A | ||
SMESRT | ✓ | ✓ | N A | N A | ||
CollECT | ✓ | ✓ | N A | N A | ||
EELLER | ✓ | N A | N A | ✓ | ||
IQAR | ✓ | N A | N A | ✓ | ||
ERP | ✓ | ✓ | N A | N A | ||
EEDP | ✓ | Low | ✓ | Low | ||
WB-TEEN | ✓ | ✓ | N A | N A |
Protocol | Delivery Mode | RT-Type (Soft/Hard) | Energy Efficiency | Reliability | |
---|---|---|---|---|---|
RT Delivery | NRT Delivery | ||||
PATH | ✓ | SRT | High | Medium | |
CBRR | ✓ | SRT | Medium | High | |
OMLRP | ✓ | ✓ | SRT | Low | High |
Protocol | Network Architecture | Data Aggregation | Scalability | Power Usage | |
---|---|---|---|---|---|
Data-Centric | Position Centric | ||||
ACQUIRE | ✓ | ✓ | Low | Low | |
RUGGED | ✓ | N A | Low | N A | |
Min-Hop | ✓ | N A | Medium | N A | |
PEW | ✓ | N A | Medium | N A |
Protocol | Network Topology: Hierarchical | Cluster Scalability | Scalability | Delivery Delay | Energy Efficiency | ||
---|---|---|---|---|---|---|---|
Block Cluster-Based | Grid Cluster-Based | Chain Cluster-Based | |||||
LEACH | ✓ | Medium | Very low | Very small | Very low | ||
CCM | ✓ | High | Very low | Small | Very low | ||
LEACH-VF | ✓ | High | Very low | Very small | Medium | ||
HCTE | ✓ | Medium | Very low | Very small | Very low | ||
SLGC | ✓ | Medium | Very low | Very small | Medium | ||
HGMR | ✓ | High | Very high | Moderate | Medium | ||
CCS | ✓ | Low | Low | Large | Low | ||
PEGASIS | ✓ | Low | Very low | Very large | Low |
Protocol | Heterogeneity Level | Network Lifetime |
---|---|---|
DDEEC | 2 | Medium |
TSEP | 3 | Medium |
EDDEEC | 3 | High |
BEENISH | 4 | High |
Protocol | Mobility-Based | Fault Tolerance | Energy Efficiency | Load Balancing | |
---|---|---|---|---|---|
Mobile Sink | Mobile Sensor Nodes | ||||
MBC | ✓ | N A | ✓ | N A | |
FTCP-MWSN | ✓ | ✓ | ✓ | N A |
Protocol | Network Operation: Multipath-Based | Path Disjointedness | Energy Efficiency | Reliability | Fault Tolerance | QoS | |||
---|---|---|---|---|---|---|---|---|---|
Alternative Path Routing | Load Balancing | Energy-Efficient | Data Transmission Reliability | ||||||
BMR | ✓ | Node-disjoint | Yes | N A | Yes | N A | |||
HDMRP | ✓ | Node-disjoint | No | No | Yes | No | |||
M-MPR | ✓ | Node-disjoint | No | No | No | No | |||
EECA | ✓ | Node-disjoint | Yes | N A | N A | N A | |||
LIEMRO | ✓ | Node-disjoint | Yes | N A | N A | N A | |||
MCMP | ✓ | Partially-disjoint | No | Yes | No | Yes | |||
ECMP | ✓ | Partially-disjoint | Yes | Yes | No | Yes |
Protocol | Description |
---|---|
SPIN-PP [106] | Intended to p2p communication networks. |
SPIN-EC | Same as SPIN-PP, but with limited energy. |
SPIN-BC | Optimized for broadcast channels. |
SPIN-RL | Specifically used in cases of channel loss in broadcast networks. |
M-SPIN [107] | Transmit data only to sink node instead of the whole network to save energy. |
Protocol | Heuristic and Swarm-Based | Energy Efficiency | Data Aggregation | Route Selection | |||
---|---|---|---|---|---|---|---|
SB Data-Centric Routing Protocols | SB Location-Based Protocols | SB Hierarchical Protocols | Network Flow and QoS-Aware Protocols | ||||
PEADD | ✓ | Strong | Yes | Reactive | |||
SC | ✓ | Strong | No | Hybrid | |||
SDG | ✓ | Strong | Yes | Proactive | |||
EAQR | ✓ | Strong | No | Proactive |
Protocol | Reliability | Congestion Control | Energy Efficiency | Data Aggregation | Scalability | Delivery Delay | Network Lifetime | Fault Tolerance | QoS |
---|---|---|---|---|---|---|---|---|---|
EEDP | Low | ✓ | Low | N A | N A | Moderate | N A | N A | N A |
RACE | Medium | N A | High | N A | Low | Low | N A | N A | N A |
PEW | Medium | N A | N A | N A | Medium | N A | N A | N A | N A |
HGMR | Medium | ✓ | Medium | N A | Very High | Moderate | High | N A | ✓ |
BEENISH | N A | N A | High | N A | N A | Moderate | High | N A | N A |
FTCP-MWSN | N A | N A | Medium | N A | Medium | N A | N A | ✓ | N A |
EQSR | Medium | N A | Medium | N A | Low | Moderate | N A | ✓ | ✓ |
M-SPIN | Low | N A | Medium | Yes | Low | N A | N A | N A | N A |
EAQR | N A | N A | High | No | Medium | N A | Medium | N A | N A |
Network Parameters | Values |
---|---|
Sensing area | 100 m × 100 m |
Nbr of sensors | 100 |
Location of the sink | 50, 50 |
Packet size | 4000 bits |
Sensor energy | 0.5 J |
Energy consumption on the circuit (Eelec) | 50nJ/ bit |
Dissipation energy (Efs) | 10 pJ/ bit/ m² |
Transmission energy (ETx) | 50 nJ |
Reception energy (ERx) | 50 nJ |
Data aggregation | 5 nJ/ bit/ report |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagrouba, R.; Kardi, A. Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks. Information 2021, 12, 42. https://doi.org/10.3390/info12010042
Zagrouba R, Kardi A. Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks. Information. 2021; 12(1):42. https://doi.org/10.3390/info12010042
Chicago/Turabian StyleZagrouba, Rachid, and Amine Kardi. 2021. "Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks" Information 12, no. 1: 42. https://doi.org/10.3390/info12010042
APA StyleZagrouba, R., & Kardi, A. (2021). Comparative Study of Energy Efficient Routing Techniques in Wireless Sensor Networks. Information, 12(1), 42. https://doi.org/10.3390/info12010042