Editorial for the Special Issue on “Natural Language Processing and Text Mining”
References
- Francis, S.; Landeghem, J.; Moens, M.F. Transfer Learning for Named Entity Recognition in Financial and Biomedical Documents. Information 2019, 10, 248. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Martin-Rodilla, P.; Hattori, M.; Gonzalez-Perez, C. Assisting Forensic Identification through Unsupervised Information Extraction of Free Text Autopsy Reports: The Disappearances Cases during the Brazilian Military Dictatorship. Information 2019, 10, 231. [Google Scholar] [CrossRef]
- Claro, D.; Souza, M.; Xavier, C.; Oliveira, L. Multilingual Open Information Extraction: Challenges and Opportunities. Information 2019, 10, 228. [Google Scholar] [CrossRef]
- Fernandez de Landa, J.; Agerri, R.; Alegria, I. Large Scale Linguistic Processing of Tweets to Understand Social Interactions among Speakers of Less Resourced Languages: The Basque Case. Information 2019, 10, 212. [Google Scholar] [CrossRef]
- Quaresma, P.; Nogueira, V.; Raiyani, K.; Bayot, R. Event Extraction and Representation: A Case Study for the Portuguese Language. Information 2019, 10, 205. [Google Scholar] [CrossRef]
- Gamallo, P.; Garcia, M.; Piñeiro, C.; Martinez-Castaño, R.; Pichel, J.C. LinguaKit: A Big Data-Based Multilingual Tool for Linguistic Analysis and Information Extraction. In Proceedings of the 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS), Valencia, Spain, 15–18 October 2018; pp. 239–244. [Google Scholar] [CrossRef]
- Dong, R.; Yang, Y.; Jiang, T. Spelling Correction of Non-Word Errors in Uyghur–Chinese Machine Translation. Information 2019, 10, 202. [Google Scholar] [CrossRef]
- AP, A.; Mary Idicula, S. An Improved Word Representation for Deep Learning Based NER in Indian Languages. Information 2019, 10, 186. [Google Scholar] [CrossRef]
- Maurel, D.; Morale, E.; Thouvenin, N.; Ringot, P.; Turri, A. Istex: A Database of Twenty Million Scientific Papers with a Mining Tool Which Uses Named Entities. Information 2019, 10, 178. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamallo, P.; Garcia, M. Editorial for the Special Issue on “Natural Language Processing and Text Mining”. Information 2019, 10, 279. https://doi.org/10.3390/info10090279
Gamallo P, Garcia M. Editorial for the Special Issue on “Natural Language Processing and Text Mining”. Information. 2019; 10(9):279. https://doi.org/10.3390/info10090279
Chicago/Turabian StyleGamallo, Pablo, and Marcos Garcia. 2019. "Editorial for the Special Issue on “Natural Language Processing and Text Mining”" Information 10, no. 9: 279. https://doi.org/10.3390/info10090279
APA StyleGamallo, P., & Garcia, M. (2019). Editorial for the Special Issue on “Natural Language Processing and Text Mining”. Information, 10(9), 279. https://doi.org/10.3390/info10090279