A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments
Abstract
:1. Introduction
- (a)
- Identify algorithms and techniques used for energy consumption optimization and energy consumption scheduling in smart homes.
- (b)
- Identify edge and fog computing techniques used in smart homes.
- (c)
- Identify comfort index parameters in smart homes.
- (d)
- Identify the technologies used in smart homes.
- (e)
- Present a synthesis of empirical evidence found in (a), (b), (c), and (d).
2. Review Methodology
2.1. Research Questions
2.2. Searching for Literature
2.3. Inclusion/Exclusion of Literature
3. Results
4. Discussion
4.1. Research Question 1: RQ1: Which Algorithms, Techniques, and Parameters Have been Used for Energy Consumption Optimization in Smart Homes?
4.1.1. Systematic Mapping of Optimization Techniques
4.1.2. Algorithms and Techniques used for the Energy Optimization
4.2. Research Question 2: RQ2: Which Algorithms, Techniques, Parameters, and Pricing Schemes Have been Used for Energy Consumption Scheduling in Smart Homes?
4.2.1. Systematic Mapping of Scheduling Techniques
4.2.2. Algorithms and Techniques for Energy Optimization through Scheduling
4.3. Research Question 3: RQ3: How are the Edge and Fog Computing Techniques Used in Smart Homes?
Edge Computing and Fog Computing-based Techniques in Smart Homes and Smart Grids
4.4. Research Question 4: RQ4: What are the Technologies Used in Smart Homes for the Connectivity of Devices?
4.4.1. Smart Homes
4.4.2. Technologies Used in Smart Homes
4.4.3. Optimization in Domains of IoT-based Smart Cities
4.5. Research Question 5: RQ5: What are the Different Comfort Index Parameters in Smart Homes?
4.5.1. Thermal Comfort
4.5.2. Visual Comfort
4.5.3. Air Quality Comfort
4.6. Limitations of the Study
5. Conclusions
6. Future Work Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sr. No. | Reference | Sr. No. | Reference | Sr. No. | Reference | Sr. No. | Reference |
---|---|---|---|---|---|---|---|
1. | Li et al. [5] | 2. | Esmat et al. [11] | 3. | Butt et al. [12] | 4. | Amin et al. [13] |
5. | Zhao et al. [14] | 6. | Wang et al. [17] | 7. | Dounis et al. [20] | 8. | Huang and Lam [21] |
9. | Wang et al. [22] | 10. | Kolokotsa et al. [23] | 11. | Morel et al. [24] | 12. | Wright et al. [25] |
13. | Kolokotsa et al. [26] | 14. | Kolokotsa et al. [27] | 15. | Moon et al. [28] | 16. | Calvino et al. [29] |
17. | Fong et al. [30] | 18. | Trobec Lah et al. [31] | 19. | Doukas et al. [32] | 20. | Dalamagkidis et al. [33] |
21. | Liang et al. [34] | 22. | Fountain et al. [35] | 23. | Freire et al. [36] | 24. | Chi-Min et al. [37] |
25. | Mitsios et al. [38] | 26. | Moon et al. [39] | 27. | Navale et al. [40] | 28. | Dounis et al. [41] |
29. | Klein et al. [42] | 30. | Khan et al. [43] | 31. | Ghahramani et al. [44] | 32. | Nassif et al. [45] |
33. | Scherer et al. [46] | 34. | Mousavi et al. [47] | 35. | Carlucci et al. [48] | 36. | Nagy et al. [49] |
37. | Chou et al. [50] | 38. | Chew et al. [51] | 39. | Galbazar et al. [52] | 40. | Delgarm et al. [53] |
41. | Shaikh et al. [54] | 42. | Shaikh et al. [55] | 43. | Zheng et al. [56] | 44. | Lim et al. [57] |
45. | Park et al. [58] | 46. | Xu [59] | 47. | Putra [60] | 48. | Ain et al. [61] |
49. | Marvugila et al. [62] | 50. | Collotta et al. [65] | 51. | Ali et al. [66] | 52. | Wahid et al. [67] |
53. | Ali et al. [68] | 54. | Ullah et al. [69] | 55. | Fayaz et al. [70] | 56. | Fuselli et al. [71] |
57. | Avci et al. [72] | 58. | Bharathi et al. [73] | 59. | Ali et al. [74] | 60. | Talha et al. [78] |
61. | Longe et al. [79] | 62. | Rasheed et al. [80] | 63. | Longe et al. [81] | 64. | Akasiadis et al. [82] |
65. | Javaid et al. [83] | 66. | Lefort et al. [84] | 67. | Sajawal ur Rehman et al. [85] | 68. | Mohsenian-Rad et al. [86] |
69. | Javaid et al. [87] | 70. | Aslam et al. [88] | 71. | Awais et al. [89] | 72. | Ahmad et al. [90] |
73. | Samuel et al. [91] | 74. | Hussain et al. [92] | 75. | Manzoor et al. [93] | 76. | Ferrández-Pastor et al. [94] |
77. | Froiz-Míguez et al. [96] | 78. | Tehreem et al. [97] | 79. | Zakria et al. [98] | 80. | Zahoor et al. [99] |
81. | Zahor et al. [100] | 82. | Fatima et al. [101] | 83. | Chekired et al. [102] | 84. | Chekired et al. [103] |
85. | Butt et al. [104] | 86. | Nazar et al. [105] | 87. | Ismail et al. [106] | 88. | Rehman et al. [107] |
89. | Gao and Wu [108] | 90. | Ashraf et al. [109] | 91. | Sharif et al. [110] | 92. | Chakraborty and Datta [111] |
93. | Lin and Hu [112] | 94. | Sun and Ansari [113] | 95. | Vallati et al. [114] | 96. | Vallati et al. [115] |
97. | Osipov [120] | 98. | Bharathi [121] | 99. | Risteska et al. [122] | 100. | Ejaz et al. [125] |
101. | Fanger [126] | 102. | Fanger [127] | 103. | Busl [128] | 104. | Silvester and Konstantinou [129] |
105. | Rajendrakumar [130] | 106. | Batterman [131] | 107. | Yang [132] | 108. | Yang and Hossein Gandomi [133] |
109. | Bozorgi et al. [134] | 110. | Jafari et al. [135] | 111. | Husseinzadeh Kashan [136] | 112. | Rezaei et al. [137] |
113. | Zolghadr-Asli et al. [138] | 114. | Wahid et al. [139] | 115. | Askar Zadeh in 2016 [140] |
Appendix B
Ref. | Algorithm/Techniques | Focus Area | Optimization/Prediction | Comfort Index Parameters | Number of Users/Rooms | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EP | EO | TC | VC | AQC | SC | AQ | T | H | Ill | AF | HR/F | CTI | MR | WVP | EE | SU | MU | IR | |||
[17] | Particle Swarm Optimization (PSO), Hierarchical multi-agent theory, Fuzzy Controller. | Energy Saving, Comfort Index | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[22] | Genetic Algorithm, PID Controller. | Thermal Comfort. | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[23] | Fuzzy PD Controller. | Comfort Index | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[24] | Artificial Neural Network. | Thermal Comfort | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ |
[25] | Multi-Objective Genetic Algorithm (MOGA). | Thermal Comfort | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ |
[26] | Fuzzy Logic, Genetic Algorithm. | Comfort Index | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[27] | Fuzzy P, Fuzzy PID, Fuzzy PI, Fuzzy PD, Adaptive Fuzzy PD. | Comfort index | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[29] | Fuzzy Adaptive PID Controller. | Thermal Comfort | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ |
[31] | Fuzzy Logic, Auxiliary PID Controller, IDR BLOCK. | Visual Comfort, Energy Saving | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
[32] | Decision Support Model. | Comfort Index, Energy Saving, Rule Base | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ |
[33] | Fuzzy PD Controller, Linear Reinforcement Learning Controller (LRLC). | Comfort Index | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[34] | Predicted Mean Vote (PMV), Human Learning, Direct Neural Network Controller. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ |
[36] | Model-Based Predictive Control Strategy. | Thermal Comfort, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ |
[38] | Developed new Control Algorithm. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[39] | Artificial Neural Network, Predicted Mean Vote (PMV). | Thermal Comfort, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[41] | Fuzzy Logic Controller, Genetic Algorithm. | Comfort Index, Energy Saving, Learning to Control | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[42] | Markov Decision Problems (MDP). | Thermal Comfort, Energy Saving. | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
[43] | Genetic Algorithm, Fuzzy Logic Controller. | Comfort Index, Thermal Comfort, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[44] | Knowledgebase, Heuristic System Identification Approach, Fuzzy Pattern Recognition, Spearman’s Rank Correlation Analysis. | Thermal Comfort, Energy Saving | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ |
[45] | Genetic Algorithm, Artificial Neural Network. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
[46] | Distributed Model Predictive Control (DMPC). | Energy Saving. | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[49] | Passive Infrared (PIR) Motion sensors. | Visual Comfort, Energy Saving | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
[51] | Passive Infrared (PIR) Sensor, TEMT6000 Ambient Light Sensor, Daylight Harvesting, ZigBee. | Visual Comfort, Energy Saving | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
[52] | Ant Colony Optimization Algorithm, Fuzzy Controller. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[53] | Mono- and Multi-Objective Particle Swarm Optimization (MOPSO), Weighted Sum Method (WSM). | Energy Saving | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[55] | Stochastic Intelligent Optimization, Multi-Objective Genetic Algorithm (MOGA), Hybrid Multi-Objective Genetic Algorithm (HMOGA), Fuzzy Logic. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[57] | EnergyPlus Runtime Language (Erl). | Thermal Comfort, Occupant Behavior, Energy Saving | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
[59] | SoftMax Regression, Multinomial Logistic Regression, Building Control Virtual Test Bed (BCVTB). | Multiple occupant’s comforts, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
[61] | Fuzzy Logic, Mamdani and Sugeno Fuzzy Inference Systems. | Thermal Comfort, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
[62] | Auto-Regressive Neural Network with External Inputs (NNARX), Fuzzy Logic. | Thermal Comfort | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[65] | Neural Network, Fuzzy Controller. | Thermal Comfort, Energy Saving | ✗ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[66] | Genetic Algorithm, Fuzzy Controller, Kalman filter. | Energy Saving, User comfort index | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[67] | Artificial Bee Colony, Fuzzy Controllers. | Comfort index, Energy Saving | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[68] | Genetic Programming, Genetic Algorithm, Fuzzy Logic. | Energy Saving, Comfort index | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
[69] | Genetic Algorithm, Kalman Filter, Particle Swarm Optimization (PSO). | Energy Saving, Comfort Index | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[70] | Bat Algorithm, Fuzzy Logic. | Comfort Index, Energy Saving | ✗ | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ |
Appendix C
Ref. | Algorithm/Techniques | Focus Area | Optimization/Prediction | Comfort Index Parameters | Pricing Schemes | Scheduling and Cost Reduction | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FEP | EO | TC | VC | AQC | AQ | T | H | Ill | RTP | DA-RTP | CPP | TOU | FP | APD | OS | R-PAR | RPC | RC | |||
[71] | Action Dependent Heuristic Dynamic Programming (ADHDP), Neural Network, Backpropagation (BP), Particle Swarm Optimization (PSO). | Reduce Cost, Energy Saving | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ |
[72] | Model Predictive Control, Discomfort tolerance index, Hammerstein–Wiener Model, Temperature set-point assignment (TSA) algorithm. | Reduce Cost, Energy Saving | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ |
[73] | Genetic Algorithm. | Energy Saving, Reduce Cost, Demand-Side Management | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[74] | Earthworm Optimization Algorithm, Bacterial Foraging Algorithm. | Energy Saving, Reduce Cost | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[78] | Genetic Algorithm, Artificial fish Swarm Optimization (AFSO). | Energy Saving, Reduce Cost, Demand-Side Management | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[79] | Mixed Integer Linear Programming (MILP), Daily Maximum Energy Scheduling (DMES). | Energy Saving, Reduce Cost | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ |
[80] | Sequential quadratic programming, Levenberg–Marquardt, Interior-point. | Energy Saving, Reduce Cost | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[81] | Daily Maximum Energy Scheduling (DMES)-Demand-Side Management (DSM), Mixed Integer Linear Programming (MILP). | Energy Saving, Reduce Cost | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[82] | Dynamic programming algorithm, Regression algorithm, Recurrent Neural Network, Support Vector Regression, Radial Basis Function (RDF) Kernel, Random Forest Regression algorithm. | Energy Saving, Reduce Cost | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ |
[83] | Enhanced Differential Evolution (EDE), Teacher Learning-Based Optimization (TLBO). | Reduce Cost, Energy Saving, Demand-Side Management | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[84] | Model Predictive Control (MPC). | Energy Saving, Reduce Cost | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ |
[85] | Genetic Algorithm, Earthworm Optimization Algorithm. | Energy Saving, Reduce Cost, Demand-Side Management | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[86] | Energy Consumption Scheduling (ECS) Device, Distributed Algorithm. | Reduce Cost, Reduce Peak to Average Ratio | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ |
[87] | Dynamic Programming, Genetic Algorithm, Binary Particle Swarm Optimization, Hybrid Scheme GAPSO, Multiple Knapsack Problem (MKP). | Energy Saving, Reduce Cost, Load Management | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[88] | Genetic Algorithm (GA), Cuckoo Search Optimization Algorithm (CSOA), Crow Search Algorithm (CSA), smart Electricity Storage System (ESS). | Energy Saving, Reduce Cost, Demand-Side Management | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[89] | Bacterial Foraging Optimization Algorithm (BFOA), Flower Pollination Algorithm (FPA). | Energy Saving, Reduce Cost, Reduce PAR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[90] | Optimized Home Energy Management System (OHEMS), Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), Wind Driven Optimization (WDO), Bacterial Foraging Optimization (BFO), Hybrid GA-PSO (HGPO) Algorithm, Multiple Knapsack Problem (MKP). | Energy Saving, Reduce Cost, Reduce PAR | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[91] | Home Energy Management System (HEMS), Energy Storage System (ESS), Renewable Energy Resources (RES), Earliglow based optimization method, Jaya Algorithm, Enhanced Differential Evolution, Strawberry Algorithm (SBA). | Energy Saving, Reduce Cost, Reduce PAR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[92] | Genetic Harmony Search Algorithm (GHSA), Wind-Driven Optimization (WDO), Harmony Search Algorithm (HSA), Genetic Algorithm (GA). | Energy Saving, Reduce Cost, Reduce PAR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
[93] | Genetic Algorithm (GA), Teacher Learning-Based Optimization (TLBO), Linear Programming (LP). | Energy Saving, Reduce Cost, Reduce PAR, user comfort | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ | ✓ | ✓ |
References
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Cruz-Piris, L.; Rivera, D.; Marsa-Maestre, I.; de la Hoz, E.; Velasco, R.J. Access control mechanism for IoT environments based on modelling communication procedures as resources. Sensors 2018, 18, 917. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Shah, A.S. Appraisal of the most prominent attacks due to vulnerabilities in cloud computing. Int. J. Grid Distrib. Comput. 2016, 9, 13–22. [Google Scholar] [CrossRef]
- Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How can heterogeneous internet of things build our future: A survey. IEEE Commun. Surv. Tutor. 2018. [Google Scholar] [CrossRef]
- Li, X.; Wen, J.; Bai, E.-W. Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification. Appl. Energy 2016, 164, 69–88. [Google Scholar] [CrossRef]
- Wahid, F.; Ghazali, R.; Fayaz, M.; Shah, A.S. Statistical features based approach (sfba) for hourly energy consumption prediction using neural network. Int. J. Inf. Technol. Comput. Sci. 2017, 9, 23–30. [Google Scholar] [CrossRef]
- Fayaz, M.; Kim, D. A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings. Electronics 2018, 7, 222. [Google Scholar] [CrossRef]
- Wahid, F.; Ghazali, R.; Fayaz, M.; Shah, A.S. A simple and easy approach for home appliances energy consumption prediction in residential buildings using machine learning techniques. J. Appl. Environ. Biol. Sci. 2017, 7, 108–119. [Google Scholar]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Li, C.; Ding, Z.; Zhao, D.; Yi, J.; Zhang, G. Building energy consumption prediction: An extreme deep learning approach. Energies 2017, 10, 1525. [Google Scholar] [CrossRef]
- Esmat, A.; Magdy, A.; ElKhattam, W.; ElBakly, A.M. A novel energy management system using ant colony optimization for micro-grids. In Proceedings of the 3rd International Conference on Electric Power and Energy Conversion Systems, Istanbul, Turkey, 2–4 October 2013; pp. 1–6. [Google Scholar]
- Butt, A.A.; Rahim, M.H.; Khan, M.; Zahra, A.; Tariq, M.; Ahmad, T.; Javaid, N. Energy efficiency using genetic and crow search algorithms in smart grid. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing; Xhafa, F., Caballé, S., Barolli, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 63–75. [Google Scholar]
- Amin, B.; Khalid, A.; Sarwar, M.A.; Ghaffar, A.; Satti, A.; Ayub, N.; Javaid, N. Real time pricing based appliance scheduling in home energy management using optimization techniques. In Advances on Broad-Band Wireless Computing, Communication and Applications; Barolli, L., Xhafa, F., Conesa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–13. [Google Scholar]
- Zhao, Z.; Lee, W.C.; Shin, Y.; Song, K.B. An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 2013, 4, 1391–1400. [Google Scholar] [CrossRef]
- Shehadeh, H.; Idna Idris, M.; Ahmedy, I.; Ramli, R.; Mohamed Noor, N. The multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP) method for solving wireless sensor networks optimization problems in smart grid applications. Energies 2018, 11, 97. [Google Scholar] [CrossRef]
- Stein, O.; Oldenburg, J.; Marquardt, W. Continuous reformulations of discrete–continuous optimization problems. Comput. Chem. Eng. 2004, 28, 1951–1966. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, R.; Wang, L. Multi-agent control system with intelligent optimization for smart and energy-efficient buildings. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 1144–1149. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the EASE’08 Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, Bari, Italy, 26–27 June 2008. [Google Scholar]
- Dounis, A.I.; Bruant, M.; Santamouris, M.; Guarracino, G.; Michel, P. Comparison of conventional and fuzzy control of indoor air quality in buildings. J. Intell. Fuzzy Syst. 1996, 4, 131–140. [Google Scholar]
- Huang, W.; Lam, H.N. Using genetic algorithms to optimize controller parameters for hvac systems. Energy Build. 1997, 26, 277–282. [Google Scholar] [CrossRef]
- Wang, S.; Jin, X. Model-based optimal control of vav air-conditioning system using genetic algorithm. Build. Environ. 2000, 35, 471–487. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Tsiavos, D.; Stavrakakis, G.; Kalaitzakis, K.; Antonidakis, E. Advanced fuzzy logic controllers design and evaluation for buildings’ occupants thermal–visual comfort and indoor air quality satisfaction. Energy Build. 2001, 33, 531–543. [Google Scholar] [CrossRef]
- Morel, N.; Bauer, M.; El-Khoury, M.; Krauss, J. Neurobat, a predictive and adaptive heating control system using artificial neural networks. Int. J. Sol. Energy 2001, 21, 161–201. [Google Scholar] [CrossRef]
- Wright, J.A.; Loosemore, H.A.; Farmani, R. Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy Build. 2002, 34, 959–972. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Stavrakakis, G.; Kalaitzakis, K.; Agoris, D. Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using plc and local operating networks. Eng. Appl. Artif. Intell. 2002, 15, 417–428. [Google Scholar] [CrossRef]
- Kolokotsa, D. Comparison of the performance of fuzzy controllers for the management of the indoor environment. Build. Environ. 2003, 38, 1439–1450. [Google Scholar] [CrossRef]
- Moon, J.W.; Jung, S.K.; Kim, Y.; Han, S.-H. Comparative study of artificial intelligence-based building thermal control methods—Application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network. Appl. Therm. Eng. 2011, 31, 2422–2429. [Google Scholar] [CrossRef]
- Calvino, F.; La Gennusa, M.; Rizzo, G.; Scaccianoce, G. The control of indoor thermal comfort conditions: Introducing a fuzzy adaptive controller. Energy Build. 2004, 36, 97–102. [Google Scholar] [CrossRef]
- Fong, K.F.; Hanby, V.I.; Chow, T.T. Hvac system optimization for energy management by evolutionary programming. Energy Build. 2006, 38, 220–231. [Google Scholar] [CrossRef]
- Trobec Lah, M.; Zupančič, B.; Peternelj, J.; Krainer, A. Daylight illuminance control with fuzzy logic. Sol. Energy 2006, 80, 307–321. [Google Scholar] [CrossRef]
- Doukas, H.; Patlitzianas, K.D.; Iatropoulos, K.; Psarras, J. Intelligent building energy management system using rule sets. Build. Environ. 2007, 42, 3562–3569. [Google Scholar] [CrossRef]
- Dalamagkidis, K.; Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G.S. Reinforcement learning for energy conservation and comfort in buildings. Build. Environ. 2007, 42, 2686–2698. [Google Scholar] [CrossRef]
- Liang, J.; Du, R. Design of intelligent comfort control system with human learning and minimum power control strategies. Energy Convers. Manag. 2008, 49, 517–528. [Google Scholar] [CrossRef]
- Fountain, M.; Brager, G.; Arens, E.; Bauman, F.; Benton, C. Comport control for short-term occupancy. Energy Build. 1994, 21, 1–13. [Google Scholar] [CrossRef]
- Freire, R.Z.; Oliveira, G.H.C.; Mendes, N. Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 2008, 40, 1353–1365. [Google Scholar] [CrossRef]
- Chi-Min, C.; Tai-Lang, J.; Yue-Wei, H. A study of thermal comfort control using least enthalpy estimator on hvac system. In Proceedings of the 2005, American Control Conference, Portland, OR, USA, 8–10 June 2005; Volume 3665, pp. 3665–3670. [Google Scholar]
- Mitsios, I.; Kolokotsa, D.; Stavrakakis, G.; Kalaitzakis, K.; Pouliezos, A. Developing a control algorithm for cen indoor environmental criteria—Addressing air quality, thermal comfort and lighting. In Proceedings of the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; pp. 976–981. [Google Scholar]
- Moon, J.W.; Kim, J.-J. Ann-based thermal control models for residential buildings. Build. Environ. 2010, 45, 1612–1625. [Google Scholar] [CrossRef]
- Navale, R.L.; Nelson, R.M. Use of genetic algorithms to develop an adaptive fuzzy logic controller for a cooling coil. Energy Build. 2010, 42, 708–716. [Google Scholar] [CrossRef]
- Dounis, A.I.; Tiropanis, P.; Argiriou, A.; Diamantis, A. Intelligent control system for reconciliation of the energy savings with comfort in buildings using soft computing techniques. Energy Build. 2011, 43, 66–74. [Google Scholar] [CrossRef]
- Klein, L.; Kwak, J.-Y.; Kavulya, G.; Jazizadeh, F.; Becerik-Gerber, B.; Varakantham, P.; Tambe, M. Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Autom. Constr. 2012, 22, 525–536. [Google Scholar] [CrossRef]
- Khan, M.W.; Choudhry, M.A.; Zeeshan, M. An efficient design of genetic algorithm based adaptive fuzzy logic controller for multivariable control of hvac systems. In Proceedings of the 5th Computer Science and Electronic Engineering Conference (CEEC), Colchester, UK, 17–18 September 2013; pp. 1–6. [Google Scholar]
- Ghahramani, A.; Jazizadeh, F.; Becerik-Gerber, B. A knowledge based approach for selecting energy-aware and comfort-driven hvac temperature set points. Energy Build. 2014, 85, 536–548. [Google Scholar] [CrossRef]
- Nassif, N. Modeling and optimization of hvac systems using artificial neural network and genetic algorithm. Build. Simul. 2014, 7, 237–245. [Google Scholar] [CrossRef]
- Scherer, H.F.; Pasamontes, M.; Guzmán, J.L.; Álvarez, J.D.; Camponogara, E.; Normey-Rico, J.E. Efficient building energy management using distributed model predictive control. J. Process Control 2014, 24, 740–749. [Google Scholar] [CrossRef]
- Mousavi, A.; Vyatkin, V. Energy efficient agent function block: A semantic agent approach to iec 61499 function blocks in energy efficient building automation systems. Autom. Constr. 2015, 54, 127–142. [Google Scholar] [CrossRef]
- Carlucci, S.; Cattarin, G.; Causone, F.; Pagliano, L. Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (nsga-ii). Energy Build. 2015, 104, 378–394. [Google Scholar] [CrossRef]
- Nagy, Z.; Yong, F.Y.; Frei, M.; Schlueter, A. Occupant centered lighting control for comfort and energy efficient building operation. Energy Build. 2015, 94, 100–108. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ngo, N.-T. Smart grid data analytics framework for increasing energy savings in residential buildings. Autom. Constr. 2016, 72, 247–257. [Google Scholar] [CrossRef]
- Chew, I.; Kalavally, V.; Oo, N.W.; Parkkinen, J. Design of an energy-saving controller for an intelligent led lighting system. Energy Build. 2016, 120, 1–9. [Google Scholar] [CrossRef]
- Galbazar, A.; Ali, S.; Kim, D. Optimization approach for energy saving and comfortable space using aco in building. Int. J. Smart Home 2016, 10, 47–56. [Google Scholar] [CrossRef]
- Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 2016, 170, 293–303. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I. Stochastic optimized intelligent controller for smart energy efficient buildings. Sustain. Cities Soc. 2014, 13, 41–45. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. Intelligent multi-objective control and management for smart energy efficient buildings. Int. J. Electr. Power Energy Syst. 2016, 74, 403–409. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, L.; HienWong, N. Intelligent control system integration and optimization for zero energy buildings to mitigate urban heat island. Procedia Eng. 2016, 169, 100–107. [Google Scholar] [CrossRef]
- Lim, J.; Yun, G. Cooling energy implications of occupant factor in buildings under climate change. Sustainability 2017, 9, 2039. [Google Scholar] [CrossRef]
- Park, J.Y.; Dougherty, T.; Fritz, H.; Nagy, Z. Lightlearn: An adaptive and occupant centered controller for lighting based on reinforcement learning. Build. Environ. 2019, 147, 397–414. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, S.; Javed, M.; Li, N.; Gan, Z. A multi-occupants’ comfort-driven and energy-efficient control strategy of vav system based on learned thermal comfort profiles. Sci. Technol. Built Environ. 2018, 24, 1141–1149. [Google Scholar] [CrossRef]
- Putra, J.C.P. A study of thermal comfort and occupant satisfaction in office room. Procedia Eng. 2017, 170, 240–247. [Google Scholar] [CrossRef]
- Ain, Q.-U.; Iqbal, S.; Khan, S.; Malik, A.; Ahmad, I.; Javaid, N. Iot operating system based fuzzy inference system for home energy management system in smart buildings. Sensors 2018, 18, 2802. [Google Scholar] [CrossRef] [PubMed]
- Marvuglia, A.; Messineo, A.; Nicolosi, G. Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building. Build. Environ. 2014, 72, 287–299. [Google Scholar] [CrossRef]
- ISO. Moderate thermal environments determination of the pmv and ppd indices and specification of the conditions for thermal comfort. In Geneva: International Organisation for Standardization; 1994; Volume ISO 7730, Available online: https://www.iso.org/standard/14567.html (accessed on 26 January 2019).
- ANSI/ASHRAE Standard 55-2010. Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc.: Atlanta, GA, USA, 2010. [Google Scholar]
- Collotta, M.; Messineo, A.; Nicolosi, G.; Pau, G. A dynamic fuzzy controller to meet thermal comfort by using neural network forecasted parameters as the input. Energies 2014, 7, 4727–4756. [Google Scholar] [CrossRef]
- Ali, S.; Kim, D.-H. Optimized power control methodology using genetic algorithm. Wirel. Pers. Commun. 2015, 83, 493–505. [Google Scholar] [CrossRef]
- Wahid, F.; Kim, D.H. An efficient approach for energy consumption optimization and management in residential building using artificial bee colony and fuzzy logic. Math. Probl. Eng. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Ali, S.; Kim, D. Building power control and comfort management using genetic programming and fuzzy logic. J. Energy South. Afr. 2015, 26, 94–102. [Google Scholar] [CrossRef]
- Ullah, I.; Kim, D. An improved optimization function for maximizing user comfort with minimum energy consumption in smart homes. Energies 2017, 10, 1818. [Google Scholar] [CrossRef]
- Fayaz, M.; Kim, D. Energy consumption optimization and user comfort management in residential buildings using a bat algorithm and fuzzy logic. Energies 2018, 11, 161. [Google Scholar] [CrossRef]
- Fuselli, D.; De Angelis, F.; Boaro, M.; Squartini, S.; Wei, Q.; Liu, D.; Piazza, F. Action dependent heuristic dynamic programming for home energy resource scheduling. Int. J. Electr. Power Energy Syst. 2013, 48, 148–160. [Google Scholar] [CrossRef]
- Avci, M.; Erkoc, M.; Rahmani, A.; Asfour, S. Model predictive hvac load control in buildings using real-time electricity pricing. Energy Build. 2013, 60, 199–209. [Google Scholar] [CrossRef]
- Bharathi, C.; Rekha, D.; Vijayakumar, V. Genetic algorithm based demand side management for smart grid. Wirel. Pers. Commun. 2017, 93, 481–502. [Google Scholar] [CrossRef]
- Ali, M.; Abid, S.; Ghafar, A.; Ayub, N.; Arshad, H.; Khan, S.; Javaid, N. Earth worm optimization for home energy management system in smart grid. In Advances on Broad-Band Wireless Computing, Communication and Applications; Barolli, L., Xhafa, F., Conesa, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 583–596. [Google Scholar]
- Wang, G.-G.; Deb, S.; Coelho, L. Earthworm optimization algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2015, 7, 1–23. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Dasgupta, S.; Abraham, A. Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications. In Foundations of Computational Intelligence Volume 3: Global Optimization; Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 23–55. [Google Scholar]
- Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 2002, 22, 52–67. [Google Scholar]
- Talha, M.; Saeed, M.S.; Mohiuddin, G.; Ahmad, M.; Nazar, M.J.; Javaid, N. Energy optimization in home energy management system using artificial fish swarm algorithm and genetic algorithm. In Advances in Intelligent Networking and Collaborative Systems; Barolli, L., Woungang, I., Hussain, O.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 203–213. [Google Scholar]
- Longe, O.M.; Ouahada, K.; Rimer, S.; Zhu, H.; Ferreira, H.C. Effective energy consumption scheduling in smart homes. In Proceedings of the AFRICON 2015, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–5. [Google Scholar]
- Rasheed, M.; Javaid, N.; Ahmad, A.; Jamil, M.; Khan, Z.; Qasim, U.; Alrajeh, N. Energy optimization in smart homes using customer preference and dynamic pricing. Energies 2016, 9, 593. [Google Scholar] [CrossRef]
- Longe, O.M.; Ouahada, K.; Rimer, S.; Ferreira, H.C. Optimization of energy expenditure in smart homes under time-of-use pricing. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015; pp. 1–6. [Google Scholar]
- Akasiadis, C.; Panagidi, K.; Panagiotou, N.; Sernani, P.; Morton, A.; Vetsikas, I.A.; Mavrouli, L.; Goutsias, K. Incentives for rescheduling residential electricity consumption to promote renewable energy usage. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 328–337. [Google Scholar]
- Javaid, N.; Ahmed, A.; Iqbal, S.; Ashraf, M. Day ahead real time pricing and critical peak pricing based power scheduling for smart homes with different duty cycles. Energies 2018, 11, 1464. [Google Scholar] [CrossRef]
- Lefort, A.; Bourdais, R.; Ansanay-Alex, G.; Guéguen, H. Hierarchical control method applied to energy management of a residential house. Energy Build. 2013, 64, 53–61. [Google Scholar] [CrossRef]
- Sajawal ur Rehman, K.; Khan, A.; Mushtaq, N.; Faraz, S.H.; Khan, O.A.; Sarwar, M.A.; Javaid, N. Genetic algorithm and earthworm optimization algorithm for energy management in smart grid. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing; Xhafa, F., Caballé, S., Barolli, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 447–459. [Google Scholar]
- Mohsenian-Rad, A.; Wong, V.W.S.; Jatskevich, J.; Schober, R. Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–6. [Google Scholar]
- Javaid, N.; Ahmed, F.; Ullah, I.; Abid, S.; Abdul, W.; Alamri, A.; Almogren, A. Towards cost and comfort based hybrid optimization for residential load scheduling in a smart grid. Energies 2017, 10, 1546. [Google Scholar] [CrossRef]
- Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.; Aurangzeb, K.; Haider, S. Towards efficient energy management of smart buildings exploiting heuristic optimization with real time and critical peak pricing schemes. Energies 2017, 10, 2065. [Google Scholar] [CrossRef]
- Awais, M.; Javaid, N.; Aurangzeb, K.; Haider, S.; Khan, Z.; Mahmood, D. Towards effective and efficient energy management of single home and a smart community exploiting heuristic optimization algorithms with critical peak and real-time pricing tariffs in smart grids. Energies 2018, 11, 3125. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Azim Niaz, I. An optimized home energy management system with integrated renewable energy and storage resources. Energies 2017, 10, 549. [Google Scholar] [CrossRef]
- Samuel, O.; Javaid, S.; Javaid, N.; Ahmed, S.; Afzal, M.; Ishmanov, F. An efficient power scheduling in smart homes using jaya based optimization with time-of-use and critical peak pricing schemes. Energies 2018, 11, 3155. [Google Scholar] [CrossRef]
- Hussain, H.; Javaid, N.; Iqbal, S.; Hasan, Q.; Aurangzeb, K.; Alhussein, M. An efficient demand side management system with a new optimized home energy management controller in smart grid. Energies 2018, 11, 190. [Google Scholar] [CrossRef]
- Manzoor, A.; Ahmed, F.; Judge, M.A.; Ahmed, A.; Tahir, M.A.U.H.; Khan, Z.A.; Qasim, U.; Javaid, N. User comfort oriented residential power scheduling in smart homes. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing; Springer International Publishing: Cham, Switzerland, 2018; pp. 171–180. [Google Scholar]
- Ferrández-Pastor, F.-J.; Mora, H.; Jimeno-Morenilla, A.; Volckaert, B. Deployment of IoT edge and fog computing technologies to develop smart building services. Sustainability 2018, 10, 3832. [Google Scholar] [CrossRef]
- Ubidots. Data Drives Decision. Available online: https://ubidots.com/ (accessed on 7 December 2018).
- Froiz-Míguez, I.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on mqtt and zigbee-wifi sensor nodes. Sensors 2018, 18, 2660. [Google Scholar] [CrossRef] [PubMed]
- Tehreem, K.; Javaid, N.; Bano, H.; Ansar, K.; Waheed, M.; Butt, H. A cloud-fog based environment using beam search algorithm in smart grid. In 21st International Conference on Network-Based Information System (NBiS-2018); Springer International Publishing: Cham, Switzerland, 2018; pp. 661–672. [Google Scholar]
- Zakria, M.; Javaid, N.; Ismail, M.; Zubair, M.; Asad Zaheer, M.; Saeed, F. Cloud-fog based load balancing using shortest remaining time first optimization. In The 13th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2018); Springer International Publishing: Cham, Switzerland, 2018; pp. 199–211. [Google Scholar]
- Zahoor, S.; Javaid, N.; Khan, A.; Muhammad, F.; Zahid, M.; Guizani, M. A cloud-fog-based smart grid model for efficient resource utilization. In Proceedings of the 14th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC-2018), Limassol, Cyprus, 25–29 June 2018. [Google Scholar]
- Zahoor, S.; Javaid, S.; Javaid, N.; Ashraf, M.; Ishmanov, F.; Afzal, K.M. Cloud–fog–based smart grid model for efficient resource management. Sustainability 2018, 10, 2079. [Google Scholar] [CrossRef]
- Fatima, A.; Javaid, N.; Waheed, M.; Nazar, T.; Shabbir, S.; Sultana, T. Efficient resource allocation model for residential buildings in smart grid using fog and cloud computing. In Innovative Mobile and Internet Services in Ubiquitous Computing; Barolli, L., Xhafa, F., Javaid, N., Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 289–298. [Google Scholar]
- Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Decentralized cloud-sdn architecture in smart grid: A dynamic pricing model. IEEE Trans. Ind. Inform. 2018, 14, 1220–1231. [Google Scholar] [CrossRef]
- Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Queuing model for evs energy management: Load balancing algorithms based on decentralized fog architecture. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Butt, A.A.; Javaid, N.; Mujeeb, S.; Ahmed, S.; Ali, M.M.S.; Ali, W. Foged energy optimization in smart homes. In Innovative Mobile and Internet Services in Ubiquitous Computing; Barolli, L., Xhafa, F., Javaid, N., Enokido, T., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 265–275. [Google Scholar]
- Nazar, T.; Javaid, N.; Waheed, M.; Fatima, A.; Bano, H.; Ahmed, N. Modified shortest job first for load balancing in cloud-fog computing. In Advances on Broadband and Wireless Computing, Communication and Applications; Barolli, L., Leu, F.-Y., Enokido, T., Chen, H.-C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 63–76. [Google Scholar]
- Ismail, M.; Javaid, N.; Zakria, M.; Zubair, M.; Saeed, F.; Zaheer, M.A. Cloud-fog based smart grid paradigm for effective resource distribution. In International Conference on Network-Based Information Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 234–247. [Google Scholar]
- Rehman, M.; Javaid, N.; Ali, M.J.; Saif, T.; Ashraf, M.H.; Abbasi, S.H. Threshold based load balancer for efficient resource utilization of smart grid using cloud computing. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Springer International Publishing: Cham, Switzerland, 2018; pp. 167–179. [Google Scholar]
- Gao, R.; Wu, J. Dynamic load balancing strategy for cloud computing with ant colony optimization. Future Internet 2015, 7, 465–483. [Google Scholar] [CrossRef]
- Ashraf, M.H.; Javaid, N.; Abbasi, S.H.; Rehman, M.; Sharif, M.U.; Saeed, F. Smart grid management using cloud and fog computing. In International Conference on Network-Based Information Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 624–636. [Google Scholar]
- Sharif, M.U.; Javaid, N.; Ali, M.J.; Gilani, W.A.; Sadam, A.; Ashraf, M.H. Optimized resource allocation in fog-cloud environment using insert select. In International Conference on Network-Based Information Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 611–623. [Google Scholar]
- Chakraborty, T.; Datta, S.K. Home automation using edge computing and internet of things. In Proceedings of the 2017 IEEE International Symposium on Consumer Electronics (ISCE), Kuala Lumpur, Malaysia, 14–15 November 2017; pp. 47–49. [Google Scholar]
- Lin, Y.-H.; Hu, Y.-C. Residential consumer-centric demand-side management based on energy disaggregation-piloting constrained swarm intelligence: Towards edge computing. Sensors 2018, 18, 1365. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. Edgeiot: Mobile edge computing for the internet of things. IEEE Commun. Mag. 2016, 54, 22–29. [Google Scholar] [CrossRef]
- Vallati, C.; Virdis, A.; Mingozzi, E.; Stea, G. Mobile-edge computing come home connecting things in future smart homes using lte device-to-device communications. IEEE Consum. Electron. Mag. 2016, 5, 77–83. [Google Scholar] [CrossRef]
- Vallati, C.; Mingozzi, E.; Tanganelli, G.; Buonaccorsi, N.; Valdambrini, N.; Zonidis, N.; Martínez, B.; Mamelli, A.; Sommacampagna, D.; Anggorojati, B. Betaas: A platform for development and execution of machine-to-machine applications in the internet of things. Wirel. Pers. Commun. 2016, 87, 1071–1091. [Google Scholar] [CrossRef]
- Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). ISSN 2070-1721. 2014. Available online: http://www.rfc-editor.org/info/rfc7252 (accessed on 26 January 2019).
- i-Scoop. Smart Homes Automation. Available online: https://www.i-scoop.eu/smart-home-home-automation/ (accessed on 20 November 2018).
- Gartner. Gartner Survey Shows Connected Home Solutions Adoption Remains Limited to Early Adopters. Available online: https://www.gartner.com/en/newsroom/press-releases/2017-03-06-gartner-survey-shows-connected-home-solutions-adoption-remains-limited-to-early-adopters (accessed on 26 January 2019).
- Johnson Controls. 2017 Energy Efficiency Indicator Survey. Available online: https://www.johnsoncontrols.com/media-center/news/press-releases/2017/10/12/-/media/d23ec7c884d34719b0ec5b00d3a8abe2.ashx (accessed on 26 January 2019).
- Osipov, M. Home automation with zigbee. In Next Generation Teletraffic and Wired/Wireless Advanced Networking; Balandin, S., Moltchanov, D., Koucheryavy, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 263–270. [Google Scholar]
- Bharathi, N.G. Communication trends in internet of things. In Developments and Trends in Intelligent Technologies and Smart Systems; Vijayan, S., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 284–305. [Google Scholar]
- Risteska Stojkoska, B.L.; Trivodaliev, K.V. A review of internet of things for smart home: Challenges and solutions. J. Clean. Prod. 2017, 140, 1454–1464. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, M.K.; Gupta, M.P.; Madaan, J. Moving towards smart cities: Solutions that lead to the smart city transformation framework. Technol. Forecast. Soc. Chang. 2018. [Google Scholar] [CrossRef]
- Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient energy management for the internet of things in smart cities. IEEE Commun. Mag. 2017, 55, 84–91. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Mc. Graww Hill: New York, NY, USA, 1970. [Google Scholar]
- Fanger, P.O. Thermal Comfort; McGraw-Hill Book Company: New York, NY, USA, 1970. [Google Scholar]
- Busl, M. Design of an Energy-Efficient Climate Control Algorithm for Electric Cars. Master’s Thesis, Lund University, Lund, Sweden, 2011. [Google Scholar]
- Silvester, J.; Konstantinou, E. Lighting, Well-Being and Performance at Work. 2010. Available online: https://core.ac.uk/download/pdf/2707797.pdf (accessed on 26 January 2019).
- Rajendrakumar, N. Occupational Safety and Health Standards, Lighting Standards; 2014; pp. 1–18. Available online: https://www.academia.edu/10369672/ILO_Standards_on_Lighting (accessed on 26 January 2019).
- Batterman, S.; Peng, C.-U. TVOC and CO2 concentrations as indicators in indoor air quality studies. Am. Ind. Hyg. Assoc. J. 1995, 56, 55–65. [Google Scholar] [CrossRef]
- Yang, X.-S. Firefly algorithms for multimodal optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O., Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178. [Google Scholar]
- Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Bozorgi, A.; Bozorg-Haddad, O.; Chu, X. Anarchic society optimization (ASO) algorithm. In Advanced Optimization by Nature-Inspired Algorithms; Bozorg-Haddad, O., Ed.; Springer: Singapore, 2018; pp. 31–38. [Google Scholar]
- Jafari, S.; Bozorg-Haddad, O.; Chu, X. Cuckoo optimization algorithm (COA). In Advanced Optimization by Nature-Inspired Algorithms; Bozorg-Haddad, O., Ed.; Springer: Singapore, 2018; pp. 39–49. [Google Scholar]
- Husseinzadeh Kashan, A. League championship algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 2014, 16, 171–200. [Google Scholar] [CrossRef]
- Rezaei, H.; Bozorg-Haddad, O.; Chu, X. League championship algorithm (LCA). In Advanced Optimization by Nature-Inspired Algorithms; Bozorg-Haddad, O., Ed.; Springer: Singapore, 2018; pp. 19–30. [Google Scholar]
- Zolghadr-Asli, B.; Bozorg-Haddad, O.; Chu, X. Crow search algorithm (CSA). In Advanced Optimization by Nature-Inspired Algorithms; Bozorg-Haddad, O., Ed.; Springer: Singapore, 2018; pp. 143–149. [Google Scholar]
- Wahid, F.; Ghazali, R.; Shah, H. An improved hybrid firefly algorithm for solving optimization problems. In Recent Advances on Soft Computing and Data Mining; Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 14–23. [Google Scholar]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Zaki, D.A.; Hasanien, H.M.; El-Amary, N.H.; Abdelaziz, A. Crow search algorithm for improving the performance of an inverter-based distributed generation system. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 656–663. [Google Scholar]
- Lakshmi, K.; Karthikeyani Visalakshi, N.; Shanthi, S.; Parvathavarthini, S. Clustering mixed datasets using k-prototype algorithm based on crow-search optimization. In Developments and Trends in Intelligent Technologies and Smart Systems; Vijayan, S., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 191–210. [Google Scholar]
Sr. No. | Search Strings | Starting Year | End Year |
---|---|---|---|
1. | Genetic algorithms for energy optimization | 1996 | 2018 |
2. | Energy optimization in smart buildings | 1996 | 2018 |
3. | Edge computing in smart buildings | 2009 | 2018 |
4. | Fog computing in smart buildings | 2009 | 2018 |
5. | Energy scheduling in smart buildings | 2009 | 2018 |
6. | Internet of Things (IoT) in smart buildings | 2009 | 2018 |
Optimization Techniques | Scheduling, Fog, Edge, Techniques | ||
---|---|---|---|
Inclusion Criteria | Exclusion Criteria | Inclusion Criteria | Exclusion Criteria |
Publication date 1996–2018 | Published Pre-1996 | Publication date 2009–2018 | Published Pre-2009 |
Any geographical location | Patent | Any geographical location | Patent |
English language | Non-English | English language | Non-English |
Grey literature | Dissertation/Thesis | Grey literature | Dissertation/Thesis |
Reports, standards | Reports, standards | ||
The articles published in peer-reviewed journals of Web of Science, Scopus, IEEE Xplore and conference articles and proceedings answering defined research RQs | The articles regarding the energy-efficient design of buildings have been excluded | The literature has been included based on the scheduling techniques and different optimization algorithms, as defined in RQs | The articles outside of the scope of scheduling have been excluded |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.S.; Nasir, H.; Fayaz, M.; Lajis, A.; Shah, A. A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments. Information 2019, 10, 108. https://doi.org/10.3390/info10030108
Shah AS, Nasir H, Fayaz M, Lajis A, Shah A. A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments. Information. 2019; 10(3):108. https://doi.org/10.3390/info10030108
Chicago/Turabian StyleShah, Abdul Salam, Haidawati Nasir, Muhammad Fayaz, Adidah Lajis, and Asadullah Shah. 2019. "A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments" Information 10, no. 3: 108. https://doi.org/10.3390/info10030108
APA StyleShah, A. S., Nasir, H., Fayaz, M., Lajis, A., & Shah, A. (2019). A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments. Information, 10(3), 108. https://doi.org/10.3390/info10030108